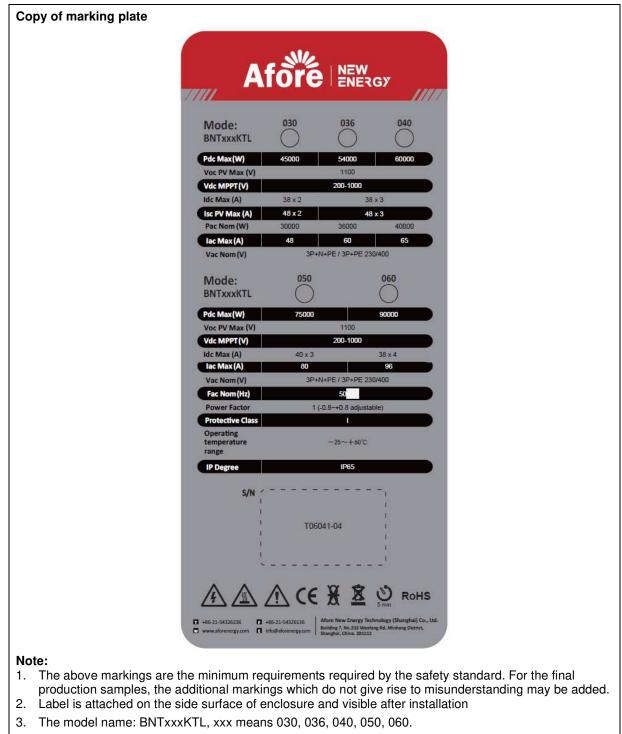


TEST REPORT C10/11 SPECIFIC TECHNICAL PRESCRIPTIONS REGARDING POWER-GENERATING PLANTS OPERATING IN PARALLEL TO THE DISTRIBUTION NETWORK

Report Reference No	230401862SHA-002	
Date of issue	2023-07-26	
Total number of pages:	69 pages	
Testing Laboratory	Intertek Testing Services Shanghai.	
Address	Building No.86, 1198 Qinzhou Road	(North), Shanghai 200233, China.
Tested by (name + signature):	Issac Chen	139ac Chen Sleif Shi
Approved by (name + signature):	Sleif Sui	Sleifsni
Applicant's name	Afore New Energy Technology (Shanghai) Co., Ltd.	
Address	Building 7, No.333 Wanfang Rd, Minhang District, Shanghai. China. 201112	
Test specification:		
Standard:	C10/11: ed.2.2, 15 Mar 2021	
Test procedure	Type approval for type A	
Non-standard test method:	N/A	
Test Report Form No	C10/11_a	
Test Report Form(s) Originator:	Intertek Guangzhou	
Master TRF:	Dated 2019-10	
	e or in part for non-commercial purposes as long kes no responsibility for and will not assume lia e to its placement and context.	

Page 2 of 69


Test item description:	Grid-connected PV inverter
Trade Mark	Afore
Manufacturer	Same as Applicant
Model/Type reference	BNT030KTL, BNT036KTL, BNT040KTL, BNT050KTL, BNT060KTL
Rating	See below Specifications table

	Specifications table				
Model	BNT030KTL	BNT036KTL	BNT040KTL	BNT050KTL	BNT060KTL
PV input					
P pv Max(W)	45000	54000	60000	75000	90000
Vmax PV (Vdc) (absolute Max.)	1100	1100	1100	1100	1100
Isc PV (absolute Max.) (A)	48 x 2	48 x 3	48 x 3	48 x 3	48 x 4
Number MPP trackers	2	3	3	3	4
Number input strings	2/3	2/2/2	2/2/2	2/2/3	2/2/2/2
Max. PV input current /					
strings (A)	38 x 2	38 x 3	38 x 3	40 x 3	38 x 4
MPPT voltage range (Vdc)	200-1000	200-1000	200-1000	200-1000	200-1000
Vdc range @ full power (Vdc)	500-850	500-850	500-850	500-850	500-850
AC Grid (output)					
Normal AC Voltage (VAC)	3P+N+PE/3P+PE 230/400				
Frequency (Hz)			50		
Normal AC Current (A)	43.5	52.2	58	72.5	87
Max. cont. output current (A)	48	60	65	80	96
Normal Power (W)	30000	36000	40000	50000	60000
Rated Apparent Power (VA)	30000	36000	40000	50000	60000
Max. cont. Power (W)	30000	36000	40000	50000	60000
Max. cont. Apparent Power (VA)	30000	36000	40000	50000	60000
Power factor(adjustable)			1.0(-0.8~+0.8)	1	
Others					
Protective class			Class I		
Ingress protection (IP)	IP65				
Temperature (°C)	-25℃ to +60℃				
Inverter Isolation	Non-isolated				
Overvoltage category		OVC III	(AC Main), OV	C II (PV)	
Software version		DSP:V0	6 CPLD:V06 I	HMI:V06	

Summary of testing:		
Tests performed (name of test and test clause):	Testing location:	
All applicable tests	Intertek Testing Services Shanghai.	
Remark: Other than special notice, for all clauses, the model BNT060KTL is type tested and valid for other models.	Building No.86, 1198 Qinzhou Road (North), Shanghai 200233, China.	

4. The information covered by on marking plate was irrelevant to this report.

intertek

Total Quality. Assured.

Page 5 of 69

Test item particulars				
Temperature range	-25°C ~ 60°	°C		
AC Overvoltage category			🖾 OVC III	
DC Overvoltage category		🛛 OVC II		
IP protection class	IP65			
Possible test case verdicts:				
- test case does not apply to the test object: :	N/A (Not ap	plicable)		
- test object does meet the requirement:	P (Pass)			
- test object does not meet the requirement:	F (Fail)			
Testing:				
Date of receipt of test item:	2023-04-27	,		
Date (s) of performance of tests:	Date (s) of performance of tests 2023-04-27 to 2023-07-26			
General remarks:				
The test results presented in this report relate only to the This report shall not be reproduced, except in full, without laboratory. "(see Enclosure #)" refers to additional information app "(see appended table)" refers to a table appended to the	out the writte	n approval of	the Issuing te	sting

When determining for test conclusion, measurement uncertainty of tests has been considered. This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

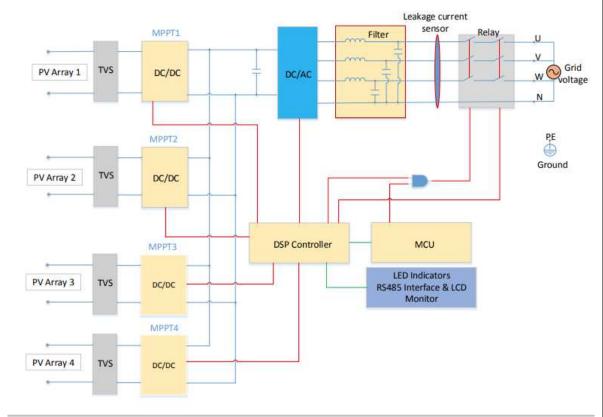
The test report only allows to be revised only within the report defined retention period unless standard or regulation was withdrawn or invalid.

Throughout this report a point is used as the decimal separator.

intertek

Page 6 of 69

General product information:


The testing item is a grid-connected type inverter for indoor or outdoor installation.

The Inverter is three-phase type and no isolation between PV input and AC output.

The relays are designed to redundant structure that controlled by separately.

The master controller and slave controller are used together to control relay open or close, if the single fault on one controller, the other controller can be capable to open the relay, so that still providing safety means.

The topology diagram as following:

Model differences:

All models are identical with hardware version and software version, the output power is derating by software.

Model BNT030KTL has 2 MPPT tracker with 5 input strings,

Model BNT036KTL and BNT040KTL has 3 MPPT trackers with 6 input strings,

Model BNT050KTL has 3 MPPT trackers with 7 input strings,

Model BNT060KTL has 4 MPPT trackers with 8 input strings,

Except as noted, the model BNT060KTL is as the representative test model in this report.

Factory information: Afore New Energy Technology (Shanghai) Co., Ltd. Building 7, No.333 Wanfang Rd, Minhang District, Shanghai. China. 201112

	C10/11: ed.2.2, 15 Mar 20	021	
Clause	Requirement - Test	Result - Remark	Verdict
ANNEXE D	Technical basic requirements regarding the power-g	enerating units	Р
D.1	General	This report is only evaluated and tested for generating unit; The generating plant incorporated with the generating unit shall further consider this clause and sub- clause.	Р
	In line with the scope of these technical specifications as well as the CENELEC standards EN 50549-1 and EN 50549-2, these requirements are applicable to all kinds of generation of electrical energy, including energy storage systems.	In line with the scope of EN 50549-1	Р
D.2	Order of priorities		Р
	If different requirements on the power-generating unit interfere with each other, the hierarchy listed in EN 50549-1 or EN 50549-2 shall be respected		Р
	 In brief, the standard specifies following hierarchy: Generating unit protection, including regarding the prime mover. Interface protection and protection against fault within the power-generating plant; Voltage support during faults and voltage steps; The lower value of: remote control command on active power limitation setpoint from the DSO and local response to overfrequency; Local response to underfrequency if applicable; Reactive power and active power (P(U)) controls; Other control commands on active power set point for e.g. market, economic reasons, self-consumption optimization. 		Ρ
D.3	Integrated automatic separation system		Р
	This clause is applicable to power-generating units with a maximum power \leq 30 kVA.		Р
	An integrated automatic separation system is strongly recommended in order to facilitate the installation procedure. Indeed, if the power-generating unit is not equipped with such an integrated system, an external device must be used	Incorporating integrated automatic separation system	Р
	For the integrated automatic separation system, the requirements of this clause apply.		Р
	Following protection functions are required: • Overvoltage 10 min mean • Overvoltage • Undervoltage • Overfrequency • Underfrequency • A means to detect island situation (LoM) according to EN 62116.	(See appended table D.3)	Р

	C10	/11: ed.2.2, 15 Mar 20	021	
Clause	Requirement - Test		Result - Remark	Verdict
	All of these protection functions m relevant requirements in EN 5054 section 4.9.3			Р
	The integrated automatic separat have single fault tolerance accord		Two series relays in each line and may independent operation for each relay.	Р
	The integrated automatic separat set in accordance with the setting ANNEXE C			Р
D.4	Operating ranges			Р
	Generating plants shall have the in the operating ranges specified the topology and the settings of th protection.	below regard-less of		Р
D.4.1	Operating frequency range			Р
	This clause is not applicable to ba as specified in § 2.2.1.	ackup power systems	Not backup power system	N/A
	The power-generating unit must of minimum requirements of the app 50549 or EN 5055-2 on the opera (edition 2019, see clause 4.4.2 « range »)	licable standard EN ting frequency range	Comply with EN 50549-1	P
	In brief, the requirements in the st follows:	andard are as	(See appended table D.4.1)	Р
	Frequency domain D	Juration		
		0 minutes		
		ermanent		
	51,0 Hz – 51,5 Hz 3	0 minutes		
	Additionally, the DSO shall be inforced apability of the power-generating the frequency range from 51,5 Hz where appropriate, the maximum in this frequency range.	y unit to operate in and 52,5 Hz and,		Р
	The URD cannot without good rea wider frequency ranges or longer periods than those specified abov technical and economic impact is	minimum operating ve, provided that the	Comply with above requirements	Р
D.4.2	Maximum admissible power red underfrequency	uction in case of		Р
	This clause is not applicable to ba as specified in § 2.2.1.		Not backup power system	N/A
	In general, a power-generating ur operate in case of a reduction of t point of connection. This means t underfrequency, the power-gener reduce the output power as little a least being capable of staying abo hereafter.	the frequency at the hat, in ating unit should as possible and at		P

	C10/11: ed.2.2, 15 Mar 20	21	1
Clause	Requirement - Test	Result - Remark	Verdic
	Where the technical capabilities of the power- generating unit are influenced by ambient conditions, these technical capabilities may be demonstrated using the following reference conditions: • Temperature: 0 °C • Altitude: between 400 and 500 m • Humidity: between 15 and 20 g H ₂ O/kg air		P
D.4.2.1	Limit for non-synchronous power-generating technology (Power Park Modules)	(See appended table D.4.2.1)	Р
	The power-generating unit must comply with the most stringent requirement of EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.4.3 « Minimal requirement for active power delivery at underfrequency »).	Comply with EN 50549-1	Р
D.4.2.2	Limits for synchronous power-generating technology	Not synchronous power- generating	N/A
	In steady state (from t2 onwards), the power- generating unit must comply with the relevant default requirement of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see section 4.4.3 « Minimal requirement for active power delivery at underfrequency »).		N/A
	Additionally, in the transient time (between t1 and t2), the power-generating unit must comply with the relevant most stringent requirement of EN 50549-1 or EN 50549-2. (In edition 2019 of the standard, the relevant requirements can be found in clause 4.4.3 « Minimal requirement for active power delivery at underfrequency »).		N/A
D.4.3	Continuous operating voltage range		Р
	The power-generating unit must comply with the relevant requirement of EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.4.4 « Continuous operating voltage range »).	Comply with EN 50549-1	Р
	In brief, the requirement in the standard specifies the power-generating plant should be capable to operate continuously when he voltage at the point of connection is within the following range:	(See appended table D.4.3)	Р
	• For a connection to the low voltage network: 85 % Un < U < 110 % Un where Un = 230 V		Р
	 For a connection to the high voltage network: 90 % Uc < U < 110 % Uc where Uc is the declared voltage. It is also allowed to reduce apparent power in case of 		N/A
	voltage is below respectively 95 % Un or 95 % Uc.		Р
D.5	Immunity to disturbances		Р
	Independent of the topology and the settings of the interface protection, a power-generating unit must have the following withstand capabilities.		Р
D.5.1	Rate of change of frequency (RoCoF) immunity		Р
	This clause does not apply to backup power systems as specified in § 2.2.1.	Not backup power system	N/A

	C10/11: ed.2.2, 15 Mar 20		
Clause	Requirement - Test	Result - Remark	Verdict
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see section 4.5.2 « Rate of change of frequency (RoCoF) immunity ») taking the additional modifications and information specified hereunder into account.	(See appended table D.5.1)	P
	The power-generating unit shall have the capability to stay connected and operate when the frequen-cy at the point of connection changes with the frequency against time profiles as depicted in the fig-ures hereunder. When considering a sliding measurement window of 500ms, these profiles have a maximum RoCoF of 2 Hz/s.		P
	For synchronous generating technology, this requirement is more stringent than the default value in the applicable standard EN 50549-1 or EN 50549-2 (2 Hz/s instead of 1 Hz/s) as, in contrast with the standard, no distinction is made between power-generating technologies.	Not synchronous power- generating	N/A
D.5.2	Under-voltage ride through UVRT		Р
	This section is not applicable to backup power systems as specified in § 2.2.1.	Not backup power system	N/A
	For a power-generating unit that is part of a power- generating module with a power ≥ 1 MW (type B in accordance with NC RfG) this paragraph is mandatory.		N/A
	For a power-generating unit that is part of a power- generating module with a power < 1 MW, this par- agraph is non-mandatory and to be considered as a orienting capability, not as a hard requirement. However, the real withstand capability to voltage dips shall be provided during the homologation process.	Considered as an orienting capability	P
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.5.3 « Under-voltage ride through (UVRT) »), with the following change: • The voltage-time profiles are to be replaced by the profiles hereunder.	(See appended table D.5.2)	P
	As a consequence, for synchronous generating technology this profile is more stringent than the default requirement in EN 50549-1 or EN 50549-2.	Not synchronous power- generating	N/A
	For some power-generating technologies, the behaviour of the power-generating unit during and after voltage dips may be impacted by the short circuit power available at the point of connection.		N/A
	For such technologies different cases can be considered:		N/A
	• Compliance with this UVRT requirement can be demonstrated considering a ratio of 10 be-tween the available short circuit power at the connection point and the maximum power of the considered power- generating module. In this case, no further checks are needed.		N/A

Page 11 of 69

Clause	Requirement - Test	Result - Remark	Verdic
Clause	 If not, the manufacturer must declare the minimum short-circuit power conditions for which the UVRT- requirement can be complied with. This value shall be 		N/A
	considered during the installation process. In line with EN 50549-1 or EN 50549-2 at least 90% of the pre-fault power or 90% of the available power whichever is the smallest, shall be resumed as fast as possible, but at the latest within the following default time after the voltage returned to the continuous operating voltage range (85% Un < U < 110% Un for a connection to a low-voltage distribution network; 90% Uc < U < 110% Uc for a connection to a high-voltage distribution network):		P
	 3 seconds for a power-generating unit with synchronous generating technology 1 second for a power-generating unit with non- 		N/A
	Another site specific maximum allowed time is to be agreed during the commissioning process. This decision must be taken with the DSO in coordination with the TSO.		P N/A
	For a backup power system connected to the high voltage distribution network as specified in §2.2.1, the general requirement is this clause may be relaxed, replacing the voltage-time profile by the figure underneath.	Not backup power system	N/A
D.5.3	Over-voltage ride through (OVRT)		N/A
	Requirement under consideration for a future edition. No requirement in this edition.		N/A
D.6	Active response to frequency deviations		Р
D.6.1	Power response to overfrequency		Р
	This clause is not applicable to backup power system as specified in section §2.2.1	Not backup power system	N/A
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see 4.6.1 « Power response to overfrequency ») taking into account the additional modifications and information specified hereunder.	Comply with EN 50549-1	Р
	Instead of the default maximum step response time of 30s specified in the standards EN 50549-1 and EN 50549-2, the following dynamic step response characteristics are required:		Р
	• For synchronous power-generating technologies For power-generating units base on a gas turbine or an internal combustion engine with technical specificities not allowing compliance with the prescriptions applied by default as de-scribed above, the following alternative prescription, relating to a minimum power gradient in increasing or decreasing frequency, is applicable:		N/A
	If Pmay <2 MW at minimum 1 11 % Pmay par		
	- If Pmax ≤2 MW at minimum 1,11 % Pmax per second		N/

Page 12 of 69

	C10/11: ed.2.2, 15 Mar 20		Manalat
Clause	Requirement - Test	Result - Remark	Verdict
	- If Pmax >2 MW at minimum 0,33 % Pmax per second		N/A
	• For non-synchronous power-generating technology	(See appended table D.6.1)	Р
	The figure hereunder clarifies the terms « Step response time» and « Settling time». In this clause, the 'Value' is the active power and the tolerance is 10%.		Р
	In line with the default requirement of the applicable standard EN 50549-1 :2019 or EN 50549-2: 2019, power-generating units reaching their minimum regulating level shall, in the event of further frequency increase, maintain this power level until a frequency decrease results in a power setpoint which is again above this level.	Comply with EN 50549-1	P
	The optional deactivation threshold f_{stop} is not required. In case f_{stop} is implemented, it shall be deactivated.		Р
	At the time of deactivation of the active power frequency response (= frequency goes down below the threshold frequency f1), the active power can be increased to up to the level of the available power. Nevertheless this shall be done respecting a power limit with a gradient of 10% Pmax/min.		P
	For energy storage systems with a connection to the high-voltage distribution network, the DSU might, for justified technical or security reasons, agree with the DSO on applicable minimum state of charge limits in his connection agreement.		N/A
	The settings must be protected from unpermitted interference (e.g. by a password or seal).		Р
	Automatic disconnection and reconnection as alternative for the droop function are not permitted by default as per the TSO provisions.		Р
D.6.2	Power response to underfrequency	Not an energy store system	N/A
	The power-generating unit must comply with the relevant requirements of the applicable EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.6.2 « Power response to underfrequency ») taking additional modifications and information as specified hereunder into account.		N/A
	This clause is applicable to energy storage systems. For justified technical or security reasons, the DSU might agree with the DSO (in his connection agreement is the power-generating plant is connected to the high-voltage distribution network) on applicable maximum state of charge limits in his connection agreement.		N/A
	This clause is optional for all other power-generating units. When, in such units, the capability of activating active power response to underfrequency is activated, the power-generating units must comply with the requirements of this clause.		N/A

0	C10/11: ed.2.2, 15 Mar 2021			
Clause	Requirement - Test Instead of the default maximum step response time of 30s in EN 50549-1 and EN 50549-2, the re-quired dynamic step response characteristics (step response time and settling time) are identical to those stipulated above regarding the power response to overfrequency, including the alternative approach for	Result - Remark	Verdic N/A	
	power-generating units based on a gas turbine or an internal combustion engine (see D.6.1). The settings must be protected from unpermitted interference (e.g. by a password or seal).		P	
D.7	Power response to voltage changes		Р	
D.7.1	Voltage support by reactive power		Р	
	A backup power system as referred to in section §2.2.1, must not comply with the requirements of this clause. Instead, for such a system, the power factor must be as close to 1 as possible and may definitely not fall below the limit of 0.85 during in-parallel operation. No control mode at all for the reactive power is imposed by the DSO.	Not backup power system	N/A	
	The power-generating plant must at least comply with the corresponding requirements of the applicable standard EN 50549-1 or EN 50549-233 (edition 2019, see clause 4.7.2 « Voltage support by reactive power ») taking the modifications and additional information specified hereunder into account. It is usually the power-generating unit itself that meets this requirement, which is assessed at the time of the homologation. In the other cases, if for example additional equipment such as a capacitor bank is necessary in combination with the power-generating unit, this will be evaluated by the DSO during the procedure for commissioning.	Comply with EN 50549-1	Ρ	
	For a power-generating plant with a maximum power ≤ 250 kVA connected to the high-voltage distribution network, the DSU may decide to comply to the equivalent requirements of EN 50549-1 rather than those of EN 50549-2.		N/A	
	The reactive power capability shall be evaluated at the terminals of the power-generating unit (including, when applicable, the step-up transformer specific to the power-generating unit).	(See appended table D.7.1)	Р	
	The real reactive power capabilities of the power- generating unit at the terminals should be communicated to the DSO. This can be done during the process of homologation.		Р	
	If the capabilities exceed the minimum requirement, and as far as this has only limited technical and economic impact, the DSU is not allowed to refuse without justification the DSO to make use of the reactive power capability (this is not applicable to a small power-generating plant (as defined in chapter 4)).		P	
	The settings of the control mode must be protected from unpermitted interference (e.g. by a password or seal).		Р	

Page 14 of 69

-

Clause Requirement - Test Result - Remark D.7.1.1 Specific for a small power-generating plant By default, the power generation unit must operate according to the following rules: • When the voltage ≤ 105 % Un: cos phi = 1 (Q=0) • When the voltage > 105 % Un: free operation with 1 ≥ cos phi > 0,9under-excited. (no over-excited operation allowed) D.7.1.2 Specific for another (not small) power-generating plant If applicable, the details of the reactive power control mode to be activated in the power-generating module. If the power-generating plant is connected to the high voltage distribution network, it may be necessary to use additional resources such as, for example, a capacitor bank to meet the previous requirements related to the supply of reactive power. If the power-generating unit is disconnected, they must be disconnected as well. Not synchronous p generating unit that is part of a power-generating module with a maximum power of ≥ 1 MW (type B according to NC RfG), the following specific requirement is also applicable: Not synchronous p generating unit of type B (power ≥ 1 MW) thall be equipped with a permanent automatic excitation control system that can provide constant alternator terminal voltage at a selectable setpoint without instability over the entire operating module. When the setpoint gives rise to a re-active power exchange beyond the capability requirements above, the reactive power exchange may be kept at the limits of the required capability.	
By default, the power generation unit must operate according to the following rules: • When the voltage ≤ 105 % Un: cos phi = 1 (Q=0) • When the voltage > 105 % Un: free operation with 1 ≥ cos phi > 0,9under-excited. (no over-excited operation allowed) D.7.1.2 Specific for another (not small) power-generating plant If applicable, the details of the reactive power control mode to be activated in the power-generating unit shall be provided by the DSO during the installation procedure. This setting might be reviewed by the DSO during the lifetime of the power-generating module. If the power-generating plant is connected to the high voltage distribution network, it may be necessary to use additional resources such as, for example, a capacitor bank to meet the previous requirements related to the supply of reactive power. If the power-generating unit is disconnected, they must be disconnected as well. Not synchronous power-generating unit that is part of a power-generating module with a maximum power of ≥ 1 MW (type B according to NC RfG), the following specific requirement is also applicable: Alternatively to the Q(U) control mode specified above, a synchronous power-generating unit of type B (power ≥ 1 MW) shall be equipped with a permanent automatic excitation control system that can provide constant alternator terminal voltage at a selectable setpoint without instability over the entire operating module. When the setpoint gives rise to a re-active power exchange beyond the capability requirements above, the reactive power exchange may be kept at the limits	Verdict
according to the following rules: • When the voltage ≤ 105 % Un: cos phi = 1 (Q=0) • When the voltage > 105 % Un: free operation with 1 ≥ cos phi > 0,9under-excited (no over-excited operation allowed) D.7.1.2 Specific for another (not small) power-generating plant If applicable, the details of the reactive power control mode to be activated in the power-generating unit shall be provided by the DSO during the installation procedure. This setting might be reviewed by the DSO during the lifetime of the power-generating module. If the power-generating plant is connected to the high voltage distribution network, it may be necessary to use additional resources such as, for example, a capacitor bank to meet the previous requirements related to the supply of reactive power. If the power-generating unit is disconnected, they must be disconnected as well. Not synchronous power-generating unit that is part of a power-generating module with a maximum power of ≥ 1 MW (type B according to NC RfG), the following specific requirement is also applicable: Not synchronous power-generating unit of type B (power ≥ 1 MW) shall be equipped with a permanent automatic excitation control system that can provide constant alternator terminal voltage at a selectable setpoint without instability over the entire operating module. When the setpoint gives rise to a re-active power exchange beyond the capability requirements above, the reactive power exchange may be kept at the limits	Р
 When the voltage > 105 % Un: free operation with 1 ≥ cos phi > 0,9under-excited. (no over-excited operation allowed) D.7.1.2 Specific for another (not small) power-generating plant If applicable, the details of the reactive power control mode to be activated in the power-generating unit shall be provided by the DSO during the installation procedure. This setting might be reviewed by the DSO during the lifetime of the power-generating module. If the power-generating plant is connected to the high voltage distribution network, it may be necessary to use additional resources such as, for example, a capacitor bank to meet the previous requirements related to the supply of reactive power. If the power-generating unit is disconnected, they must be disconnected as well. For a synchronous power-generating unit that is part of a power-generating module with a maximum power of ≥ 1 MW (type B according to NC RfG), the following specific requirement is also applicable: Alternatively to the Q(U) control mode specified above, a synchronous power-generating unit of type B (power ≥ 1 MW) shall be equipped with a permanent automatic excitation control system that can provide constant alternator terminal voltage at a selectable setpoint without instability over the entire operating range of the synchronous power-generating module. When the setpoint gives rise to a re-active power exchange beyond the capability requirements above, the reactive power exchange may be kept at the limits 	Р
 ≥ cos phi > 0,9under-excited. (no over-excited operation allowed) D.7.1.2 Specific for another (not small) power-generating plant If applicable, the details of the reactive power control mode to be activated in the power-generating unit shall be provided by the DSO during the installation procedure. This setting might be reviewed by the DSO during the lifetime of the power-generating module. If the power-generating plant is connected to the high voltage distribution network, it may be necessary to use additional resources such as, for example, a capacitor bank to meet the previous requirements related to the supply of reactive power. If the power-generating unit is disconnected, they must be disconnected as well. For a synchronous power-generating unit that is part of a power-generating module with a maximum power of ≥ 1 MW (type B according to NC RfG), the following specific requirement is also applicable: Alternatively to the Q(U) control mode specified above, a synchronous power-generating unit of type B (power ≥ 1 MW) shall be equipped with a permanent automatic excitation control system that can provide constant alternator terminal voltage at a selectable setpoint without instability over the entire operating module. When the setpoint gives rise to a re-active power exchange beyond the capability requirements above, the reactive power exchange may be kept at the limits 	Р
plant If applicable, the details of the reactive power control mode to be activated in the power-generating unit shall be provided by the DSO during the installation procedure. This setting might be reviewed by the DSO during the lifetime of the power-generating module. Not connected to the high voltage distribution network, it may be necessary to use additional resources such as, for example, a capacitor bank to meet the previous requirements related to the supply of reactive power. If the power-generating unit is disconnected, they must be disconnected as well. Not synchronous power-generating unit that is part of a power-generating module with a maximum power of ≥ 1 MW (type B according to NC RfG), the following specific requirement is also applicable: Not synchronous power-generating unit of type B (power ≥ 1 MW) shall be equipped with a permanent automatic excitation control system that can provide constant alternator terminal voltage at a selectable setpoint without instability over the entire operating module. When the setpoint gives rise to a re-active power exchange beyond the capability requirements above, the reactive power exchange may be kept at the limits	Р
mode to be activated in the power-generating unit shall be provided by the DSO during the installation procedure. This setting might be reviewed by the DSO during the lifetime of the power-generating module.Not connected to f voltage distribution network, it may be necessary to use additional resources such as, for example, a capacitor bank to meet the previous requirements related to the supply of reactive power. If the power- generating unit is disconnected, they must be disconnected as well.Not synchronous p ould be according to NC RfG), the following specific requirement is also applicable:Alternatively to the Q(U) control mode specified above, a synchronous power-generating unit of type B (power ≥ 1 MW) shall be equipped with a permanent automatic excitation control system that can provide constant alternator terminal voltage at a selectable setpoint without instability over the entire operating range of the synchronous power-generating module. When the setpoint gives rise to a re-active power exchange beyond the capability requirements above, the reactive power exchange may be kept at the limits	Р
voltage distribution network, it may be necessary to use additional resources such as, for example, a capacitor bank to meet the previous requirements related to the supply of reactive power. If the power- generating unit is disconnected, they must be disconnected as well.voltage distributionFor a synchronous power-generating unit that is part of a power-generating module with a maximum power of ≥ 1 MW (type B according to NC RfG), the following specific requirement is also applicable:Not synchronous p generating unit of type B (power ≥ 1 MW) shall be equipped with a permanent automatic excitation control system that can provide constant alternator terminal voltage at a selectable setpoint without instability over the entire operating module. When the setpoint gives rise to a re-active power exchange beyond the capability requirements above, the reactive power exchange may be kept at the limits	P
of a power-generating module with a maximum power of ≥ 1 MW (type B according to NC RfG), the following specific requirement is also applicable: generating unit Alternatively to the Q(U) control mode specified above, a synchronous power-generating unit of type B (power ≥ 1 MW) shall be equipped with a permanent automatic excitation control system that can provide constant alternator terminal voltage at a selectable setpoint without instability over the entire operating range of the synchronous power-generating module. When the setpoint gives rise to a re-active power exchange beyond the capability requirements above, the reactive power exchange may be kept at the limits	
a synchronous power-generating unit of type B (power ≥ 1 MW) shall be equipped with a permanent automatic excitation control system that can provide constant alternator terminal voltage at a selectable setpoint without instability over the entire operating range of the synchronous power-generating module. When the setpoint gives rise to a re-active power exchange beyond the capability requirements above, the reactive power exchange may be kept at the limits	oower- N/A
	N/A
The setpoint must be selectable in the continuous operating voltage range (see section D.4.3) and is given by the DSO.	Р
The DSO can give the required instructions to make the selection of the setpoint possible remotely by the DSO's control center (see § 7.13), respecting the applicable regional legal framework.	Р
D.7.2 Voltage related active power reduction P(U) (See appended tal	ole D.7.2) P

	C10/11: ed.2.2, 15 Mar 20	21	
Clause	Requirement - Test	Result - Remark	Verdict
	Voltage relating active power reduction is allowed and even recommended in order to avoid disconnection due to the operation of the overvoltage protection. When implemented, the power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN50549-2 (edition 2019, see clause 4.7.3 « Voltage related active power reduction »).	Comply with EN 50549-1	Р
D.7.3	Provision of additional fast reactive current during faults and voltage steps		Р
	This Section is only applicable to non-synchronous power-generating units connected to a high volt-age distribution network and are not part of a small power- generating plant.		Р
	For power-generating units that are part of a power- generating module with a maximum power <1 MW, there is no capability requirement. However, if such a generating module has the capability to provide additional fast reactive current during faults and voltage steps, this function must be deactivated by default.		Ρ
	Power-generating units that are part of a power- generating module with a maximum power \geq 1 MW must comply with the relevant requirements of the standard EN 50549-2 (edition 2019, see clause 4.7.4.2.1 « Voltage support during faults and voltage steps »), taking the additional information specified in this Section into account. By default, this function must be deactivated.		Ρ
	A directly connected asynchronous machine cannot provide voltage support in a controlled manner with regard to short circuit currents as a consequence of faults or when there are sudden voltage variations. The DSO will include these elements in its assessment of the demand for connection.		N/A
D.8	Connection and reconnection		Р
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.10 « Connection and starting to generate electrical power ») taking the additional information specified hereunder into account.	Comply with EN 50549-1	P
	Connection and reconnection after tripping of the interface protection relay is subject to the conditions listed in the table hereunder. These settings are different than the default settings of EN 50549-1 and EN 50549-2.	(See appended table D.8)	P
	The automatic connection and reconnection is allowed if the abovementioned conditions are met.		Р

	C10/11: ed.2.2, 15 Mar 20	21	
Clause	Requirement - Test	Result - Remark	Verdict
	If, at the power-generating unit connected to the HV distribution network, no distinct sets of conditions can be applied, it is not possible to make a distinction between the two connection modes, the conditions must be chosen such as they meet both sets of conditions.	Not connected to the HV distribution network	N/A
D.9	Ceasing and reduction of active power on set point		Р
	This clause is not applicable to the backup power systems specified in §2.2.1.	Not backup power system	N/A
D.9.1	Ceasing active power	(See appended table D.9)	Р
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 5054-1 or EN 50549-2 (edition 2019, see clause 4.11.1 « Ceasing active power ») taking into account the additional information specified hereunder.	Comply with EN 50549-1	P
	In brief, the requirements in the standards are the following:		Р
	For modules with a power > 800 W, a logic interface to cease the production of active power within 5 seconds after receiving the instruction is required.		Р
	Remote operation is optional		Р
	Respecting the regional regulatory provisions, the DSO can request additional equipment for a remote operation of this logic interface.		P
	Unless defined otherwise by the DSO, this logic interface is based on a contact rather than using a communicated protocol.		P
D.9.2	Reduction of active power on set point	(See appended table D.9)	Р
	The requirement of this Section is applicable only to the power-generating units that are part of:		Р
	 a power-generating module with a maximum power of ≥ 1 MW 		N/A
	• a power-generating plant with a maximum power of > 250 kVA, if the DSO so requires, in accordance with the regional regulations.		Р
	The power-generating module must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.11.2 « Reduction of active power on set point ») taking into account the additional information specified hereunder. Generally, the power-generating unit complies with this requirement, which is assessed when homologated. Otherwise, if, for example, additional equipment such as a capacitor bank is required in combination with the power-generating unit, this will be evaluated by the DSO during the commissioning procedure.	Comply with EN 50549-1	Ρ

Page 17 of 69

C10/11: ed.2.2, 15 Mar 2021									
Clause	Requirement - Test	Result - Remark	Verdict						
	In brief, the requirements in the standard are the following: For type B modules: The settings of the limit must be possible with a maximum increment of 10%. Reduction of the power generation to the respective limit in a range of maximum 0,66 % Pn/ s and of minimum 0,33 % Pn/ s Deconnection of the network is allowed when below minimum regulating level		Ρ						
	Remote operation is optional								
	Depending of the modalities specified in section D.10 hereafter, the DSO can request additional equipment for a remote operation of this reduction.		N/A						
D.10	Communication – Remote monitoring and control		N/A						

Appended Table - Testing Result

Appen 8.2.3		ole - Testi	-	-suit									P
		TABLE: Fli	cker										Р
			01001										
According to EN 61000-3-3/EN 61000-3-11 Model: BNT060KTL													
Model: E	N 1060K1	L											
Va	ue	Dc (%)	C	O _{max} (%)		d(t) –	500m	s		Pst		Plt
Lir	nit	3.30		4.00			3.30%			1.00			0.65
Tart	L1	0.030			0.365		(0.0		(0.119		0.116
Test value	L2	0.042			0.290		(0.0		(0.128		0.123
	L3	0.758			1.296		(0.0		(0.179		0.151
	C	lc[%]	d	max[%]		d(t)[ms			Ps	t		Plt
Limit		3.30		4.00			500			1.0	0		0.65
				-	_		3.30%						N:12
No. 1	0.02		0.2		Pass	0.0		Pass		117	Pass		
2	0.03		0.2		Pass	0.0		Pass		114 116	Pass		
4	0.02		0.2		Pass Pass	0.0		Pass Pass		116 115	Pass Pass		
5	0.02		0.2		Pass	0.0		Dass		114	Pass		
6	0.02		0.3		Pass	0.0		Pass		116	Pass		
7	0.02		0.2		Pass	0.0		Dass		115	Pass		
8	0.02		0.2		Pass	0.0		Pass		116	Pass		
9	0.02		0.2		Pass	0.0		Pass		119	Pass		
10	0.02		0.2		Pass	0.0		Pass		117	Pass		
11	0.01		0.2		Pass	0.0		Dass		116	Pass		
12 Resul	0.02	9 Pass Pass	0.2	90	Pass Pass	0.0		Pass Pass	0.1	116	Pass Pass	0.116	6 Pass
Resu		F 455				1.4		a 55			1 455	0.110	- Fass
				-		L1 pł		•		_			
1		lc[%]	d	max[-		d(t)[ms			Ps			Plt
Limit		3.30		4.00			500 3.30%			1.0	0		0.65 N:12
No. 1	0.02	3 Pass	0.2	90	Pass	0.0		Pass	0.1	126	Pass		11.12
2	0.02		0.2		Pass	0.0		Pass		123	Pass		
3	0.01		0.2		Pass	0.0		Pass		128	Pass		
4	0.01		0.2	34	Pass	0.0		Pass		122	Pass		
5	0.02		0.1		Pass	0.0		Pass		123	Pass		
6	0.01		0.1		Pass	0.0		Pass		123	Pass		
7	0.03		0.1		Pass	0.0		Pass		123	Pass		
8 9	0.04		0.1		Pass Pass	0.0 0.0		Pass Pass		124 123	Pass Pass		
9 10	0.03		0.1		Pass	0.0		Pass		123	Pass		
11	0.02		0.2		Pass	0.0		Pass		118	Pass		
12	0.03		0.2		Pass	0.0		Pass		122	Pass		
Result		Pass			Pass			Pass			Pass	0.12	3 Pass
						L2 pł	nase						

Page 19 of 69

Report No. 230401862SHA-002

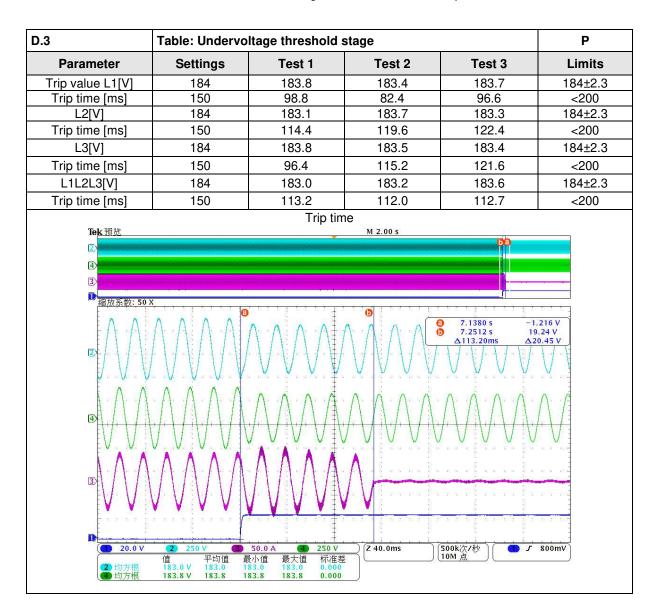
	dc[^c	%]	dmax	[%]	d(t)	[ms]	Ps	st	P	t
Limit	3.3	0	4.0	0	500		1.00		0.6	35
					3.3	0%			N:1	2
No. 1	0.118	Pass	0.257	Pass	0.0	Pass	0.117	Pass		
2	0.156	Pass	0.209	Pass	0.0	Pass	0.163	Pass		
3	0.078	Pass	0.165	Pass	0.0	Pass	0.179	Pass		
4	0.580	Pass	1.168	Pass	0.0	Pass	0.142	Pass		
5	0.153	Pass	1.191	Pass	0.0	Pass	0.157	Pass		
6	0.106	Pass	0.303	Pass	0.0	Pass	0.118	Pass		
7	0.224	Pass	0.437	Pass	0.0	Pass	0.156	Pass		
8	0.115	Pass	0.219	Pass	0.0	Pass	0.146	Pass		
9	0.758	Pass	1.296	Pass	0.0	Pass	0.162	Pass		
10	0.693	Pass	1.189	Pass	0.0	Pass	0.153	Pass		
11	0.211	Pass	0.539	Pass	0.0	Pass	0.154	Pass		
12	0.071	Pass	0.275	Pass	0.0	Pass	0.148	Pass		
Result		Pass		Pass		Pass		Pass	0.151	Pass
					L3 phase					

8.2.3		ТАВ	LE: Flick	er										Р
Flicker m	easure	ment	t											
According to EN 61000-3-3/EN 61000-3-11														
Model: B	NT030K	TL												
Val	ue		Dc (%)		I	D _{max} (%)		d(t) -	– 500m	s		Pst		Plt
Lin	nit		3.30		4.00			3.30%			1.00			0.65
_	L1		0.031			0.337			0.0			0.118		0.113
Test value	L2		0.044			0.333			0.0			0.127		0.120
	L3		0.258			0.525			0.0			0.298		0.155
		dc[%	%]	d	max[%]		d(t)[m	s]		Ps	st		Plt
Limit		3.3	0		4.00)		500			1.0	00		0.65
N		~~	2	0.00		D		3.30%			110	2		N:12
No. 1 2	0.0		Pass Pass	0.30		Pass Pass	0.0 0.0		Pass Pass		118 116	Pass Pass		
3	0.0		Pass	0.20		Pass	0.0		Pass		115	Pass		
4	0.0		Pass	0.29		Pass	0.0		Pass		113	Pass		
5	0.0		Pass	0.23		Pass	0.0		Pass		112	Pass		
6	0.0	19	Pass	0.24	13	Pass	0.0)	Pass	0.	112	Pass		
7	0.0		Pass	0.33		Pass	0.0		Pass		111	Pass		
8	0.0		Pass	0.26		Pass	0.0		Pass		110	Pass		
9	0.0		Pass	0.23		Pass	0.0		Pass		112	Pass		
10 11	0.0		Pass	0.22		Pass	0.0 0.0		Pass		112 113	Pass		
12	0.0		Pass Pass	0.20		Pass Pass	0.0		Pass Pass		110	Pass Pass		
Result		20	Pass	0.00		Pass	0.0		Pass	0.	110	Pass	0.1	13 Pass
							L1 ph							
		dc[%	/1	d	may			d(t)[m	o]		Ps	. +		Plt
Limit		3.3		u	max[4.00	_		500	5]		1.0			0.65
		0.0	Č		-1.00	,		3.30%	6		1.0			N:12
No. 1	0.0	07	Pass	0.22	22	Pass	0.0		Pass	0.	107	Pass		
2	0.0		Pass	0.24		Pass	0.0		Pass		110	Pass		
3	0.0		Pass	0.30		Pass	0.0		Pass		119	Pass		
4	0.0		Pass	0.29		Pass	0.0		Pass		116	Pass		
5	0.0		Pass	0.2		Pass	0.0		Pass		119	Pass		
6 7	0.0		Pass Pass	0.33		Pass Pass	0.0 0.0		Pass Pass		122 120	Pass Pass		
8	0.0		Pass	0.24		Pass	0.0		Pass		127	Pass		
9	0.0		Pass	0.27		Pass	0.0		Pass		123	Pass		
10	0.0		Pass	0.26		Pass	0.0		Pass		123	Pass		
11	0.0		Pass	0.29		Pass	0.0		Pass		125	Pass		
12	0.0	36	Pass	0.28	35	Pass	0.0)	Pass	0.	122	Pass		
Result			Pass			Pass			Pass			Pass	0.1	20 Pass
							L2 ph	nase						

Page 21 of 69

Report No. 230401862SHA-002

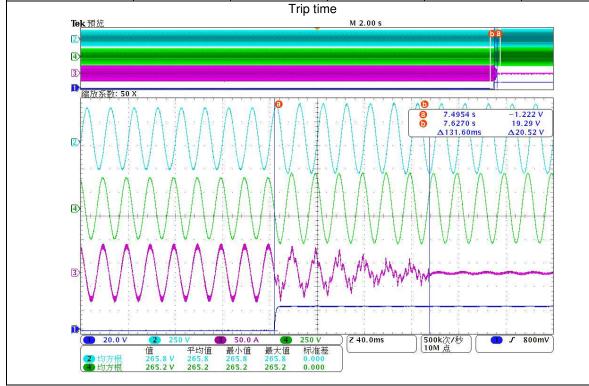
	dc[^c	%]	dmax	[%]	d(t)	[ms]	Ps	st	P	t
Limit	3.3	0	4.0	0	500		1.00		0.6	35
					3.3	30%			N:1	2
No. 1	0.258	Pass	0.334	Pass	0.0	Pass	0.159	Pass		
2	0.140	Pass	0.312	Pass	0.0	Pass	0.127	Pass		
3	0.027	Pass	0.525	Pass	0.0	Pass	0.130	Pass		
4	0.090	Pass	0.376	Pass	0.0	Pass	0.298	Pass		
5	0.058	Pass	0.324	Pass	0.0	Pass	0.119	Pass		
6	0.026	Pass	0.197	Pass	0.0	Pass	0.109	Pass		
7	0.035	Pass	0.217	Pass	0.0	Pass	0.111	Pass		
8	0.016	Pass	0.214	Pass	0.0	Pass	0.107	Pass		
9	0.016	Pass	0.211	Pass	0.0	Pass	0.103	Pass		
10	0.011	Pass	0.201	Pass	0.0	Pass	0.102	Pass		
11	0.024	Pass	0.244	Pass	0.0	Pass	0.103	Pass		
12	0.069	Pass	0.222	Pass	0.0	Pass	0.103	Pass		
Result		Pass		Pass		Pass		Pass	0.155	Pass
					L3 phase					


8.2.4	TABLE: Cu	rrent harmonic	s emission t	est(EN 61000-3	-12)						
Model	BNT060KTL										
		L1	L2			L3	Limite				
Harmonic	Magnitude (A)	% of Fundamental	Magnitude (A)	% of Fundamental	Magnitude (A)	% of Fundamental	Limits (%)				
1	86.939	99.980	86.939	99.983	86.939	99.979					
2	0.637	0.733	0.805	0.926	0.867	0.997	8				
3	0.679	0.781	0.541	0.622	0.594	0.683	21.6%				
4	0.228	0.262	0.150	0.173	0.281	0.323	4				
5	0.893	1.027	1.012	1.164	0.945	1.087	10.7				
6	0.109	0.125	0.084	0.097	0.108	0.124	2.7				
7	0.936	1.077	0.398	0.458	0.803	0.924	7.2				
8	0.161	0.185	0.169	0.194	0.170	0.196	2				
9	0.118	0.136	0.123	0.142	0.093	0.107	N/A				
10	0.072	0.083	0.097	0.111	0.087	0.100	1.6				
11	0.301	0.346	0.416	0.478	0.402	0.462	3.1				
12	0.091	0.105	0.104	0.120	0.083	0.096	1.3				
13	0.297	0.342	0.146	0.168	0.203	0.234	2				
14	0.075	0.086	0.088	0.101	0.095	0.109	N/A				
15	0.062	0.071	0.127	0.146	0.150	0.172	N/A				
16	0.063	0.072	0.090	0.104	0.095	0.109	N/A				
17	0.137	0.158	0.144	0.166	0.075	0.086	N/A				
18	0.058	0.067	0.060	0.069	0.073	0.084	N/A				
19	0.077	0.089	0.063	0.072	0.077	0.089	N/A				
20	0.030	0.035	0.049	0.056	0.051	0.059	N/A				
21	0.043	0.050	0.040	0.046	0.044	0.051	N/A				
22	0.028	0.032	0.044	0.051	0.050	0.057	N/A				
23	0.060	0.069	0.053	0.061	0.070	0.081	N/A				
24	0.026	0.030	0.034	0.039	0.042	0.048	N/A				
25	0.041	0.047	0.050	0.058	0.030	0.035	N/A				
26	0.019	0.022	0.030	0.034	0.032	0.037	N/A				
27	0.022	0.025	0.029	0.033	0.036	0.041	N/A				
28	0.016	0.018	0.028	0.032	0.030	0.035	N/A				
29	0.023	0.026	0.031	0.036	0.030	0.034	N/A				
30	0.012	0.014	0.019	0.022	0.025	0.029	N/A				
31	0.023	0.026	0.030	0.034	0.030	0.035	N/A				
32	0.012	0.014	0.020	0.023	0.025	0.029	N/A				
33	0.017	0.019	0.018	0.021	0.028	0.032	N/A				
34	0.010	0.012	0.017	0.020	0.026	0.030	N/A				
35	0.017	0.019	0.011	0.013	0.023	0.026	N/A				
36	0.010	0.011	0.016	0.018	0.024	0.028	N/A				
37	0.016	0.018	0.012	0.014	0.020	0.023	N/A				
38	0.009	0.010	0.013	0.015	0.022	0.025	N/A				
39	0.014	0.016	0.016	0.018	0.021	0.024	N/A				
40	0.010	0.012	0.012	0.014	0.020	0.023	N/A				
THD	-	1.977	-	1.843	-	2.039	13				
PWHD	-	1.166	-	1.390	-	1.442	22				

8.2.4	TABLE: Cu	rrent harmonics	s emission te	est(EN 61000-3-	2)		
Model	BNT030KTL	-					
		L1		L2		L3	Limite
Harmonic	Magnitude (A)	% of Fundamental	Magnitude (A)	% of Fundamental	Magnitude (A)	% of Fundamental	Limits (%)
1	43.478	100.000	43.478	100.000	43.478	100.000	
2	0.009	0.021	0.009	0.021	0.018	0.041	8
3	0.036	0.082	0.039	0.090	0.037	0.086	21.6%
4	0.013	0.029	0.007	0.017	0.016	0.037	4
5	0.036	0.083	0.035	0.080	0.029	0.067	10.7
6	0.013	0.029	0.006	0.014	0.007	0.015	2.7
7	0.007	0.016	0.010	0.022	0.010	0.023	7.2
8	0.003	0.006	0.003	0.006	0.004	0.009	2
9	0.010	0.024	0.002	0.004	0.011	0.025	N/A
10	0.002	0.004	0.005	0.012	0.005	0.012	1.6
11	0.032	0.073	0.030	0.069	0.033	0.075	3.1
12	0.010	0.024	0.007	0.015	0.008	0.019	1.3
13	0.018	0.042	0.018	0.041	0.017	0.038	2
14	0.004	0.010	0.005	0.012	0.007	0.016	N/A
15	0.006	0.014	0.003	0.008	0.004	0.009	N/A
16	0.006	0.014	0.007	0.017	0.008	0.019	N/A
17	0.008	0.018	0.007	0.016	0.011	0.026	N/A
18	0.007	0.017	0.007	0.015	0.011	0.026	N/A
19	0.026	0.060	0.023	0.052	0.022	0.051	N/A
20	0.007	0.017	0.006	0.013	0.007	0.016	N/A
21	0.007	0.016	0.006	0.013	0.007	0.017	N/A
22	0.008	0.019	0.004	0.010	0.005	0.011	N/A
23	0.013	0.031	0.014	0.032	0.015	0.034	N/A
24	0.008	0.019	0.009	0.020	0.010	0.023	N/A
25	0.020	0.046	0.019	0.043	0.017	0.039	N/A
26	0.005	0.012	0.005	0.012	0.007	0.015	N/A
27	0.004	0.009	0.004	0.010	0.005	0.012	N/A
28	0.005	0.011	0.007	0.015	0.005	0.011	N/A
29	0.012	0.028	0.012	0.028	0.012	0.027	N/A
30	0.007	0.015	0.005	0.012	0.007	0.015	N/A
31	0.019	0.044	0.020	0.046	0.018	0.041	N/A
32	0.005	0.012	0.004	0.009	0.005	0.011	N/A
33	0.004	0.009	0.003	0.006	0.004	0.010	N/A
34	0.007	0.015	0.008	0.018	0.007	0.017	N/A
35	0.010	0.022	0.011	0.025	0.015	0.035	N/A
36	0.007	0.015	0.006	0.014	0.007	0.016	N/A
37	0.014	0.033	0.016	0.037	0.017	0.038	N/A
38	0.003	0.008	0.004	0.009	0.003	0.008	N/A
39	0.002	0.005	0.002	0.005	0.002	0.005	N/A
40	0.006	0.013	0.006	0.014	0.007	0.015	N/A
THD	-	0.849	-	0.842	-	0.853	13
PWHD	-	0.613	-	0.610	-	0.638	22

Page 24 of 69

Report No. 230401862SHA-002

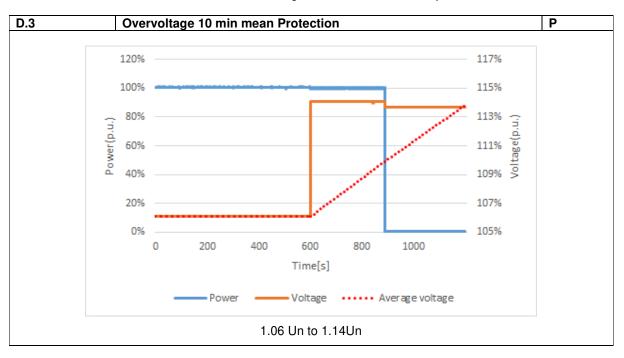


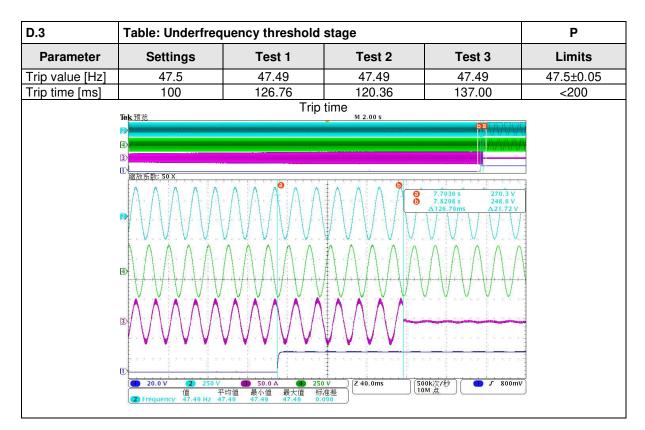
Intertek Total Quality. Assured.

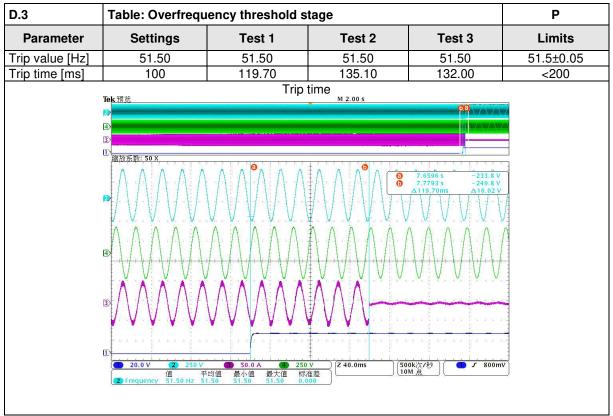
Page 25 of 69

Report No. 230401862SHA-002

D.3	Table: Overvol	Р			
Parameter	Settings	Test 1	Test 2	Test 3	Limits
Trip value L1 [V]	264.5	265.9	265.8	265.7	264.5±2.3
Trip time [ms]	100	114.4	104.0	111.6	<200
L2 [V]	264.5	265.0	265.8	265.3	264.5±2.3
Trip time [ms]	100	118.0	126.4	129.6	<200
L3 [V]	264.5	265.3	265.4	265.5	264.5±2.3
Trip time [ms]	100	131.2	99.2	133.2	<200
L1L2L3 [V]	264.5	265.8	265.7	265.4	264.5±2.3
Trip time [ms]	100	131.6	130.8	112.4	<200


intertek


Total Ouality.



Page 27 of 69

Report No. 230401862SHA-002

intertek

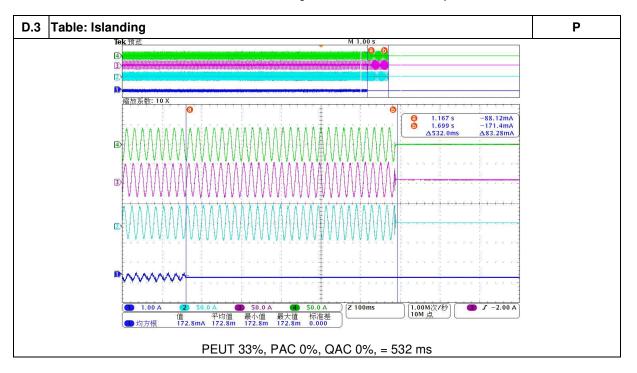
rating) of Gr (in b, 1.d) nominal) nominal) time (ms) Cr Cr 1 100 100 0 0 254.0 60000 1.00 785 Test A at E 2 66 66 0 0 559.0 39600 1.00 690 Test B at E 3 33 33 0 0 532.0 19800 1.00 576 Test C at E 4 100 100 -5 -5 181.0 60000 0.98 785 Test A at I 5 100 100 -5 5 210.0 60000 1.02 785 Test A at I 7 100 100 0 -5 230.0 60000 0.98 785 Test A at I 9 100 100 5 -5 202.0 60000 0.97 785 Test A at I 11 100 100 5 5 171.0 60000 0.97 Fest	D.3	3 Table: Islanding											
2 66 66 0 0 559.0 39600 1.00 690 Test B at B 3 33 33 0 0 532.0 19800 1.00 576 Test C at B 4 100 100 -5 -5 181.0 60000 0.98 785 Test A at I 5 100 100 -5 5 210.0 60000 1.00 785 Test A at I 6 100 100 -5 5 210.0 60000 0.98 785 Test A at I 7 100 100 0 -5 230.0 60000 1.00 785 Test A at I 9 100 100 5 -5 202.0 60000 0.97 785 Test A at I 11 100 100 5 5 171.0 60000 0.97 785 Test A at I 12 66 66 0 -4 212.8 39600	No.	(%of EUT	load (% of Q _L in	P _{AC} ²⁷ (% of	(% of		P _{EUT} (W)		V _{DC}	Remarks ⁴⁾			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	100	100	0	0	254.0	60000	1.00	785	Test A at BL			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	66	66	0	0	559.0	39600	1.00	690	Test B at BL			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	33	33	0	0	532.0	19800	1.00	576	Test C at BL			
6 100 100 -5 5 210.0 60000 1.02 785 Test A at 1 7 100 100 0 -5 243.0 60000 0.98 785 Test A at 1 8 100 100 0 5 230.0 60000 1.00 785 Test A at 1 9 100 100 5 -5 202.0 60000 0.96 785 Test A at 1 10 100 100 5 0 192.0 60000 0.97 785 Test A at 1 11 100 100 5 5 171.0 60000 0.97 690 Test B at 1 12 66 66 0 -4 212.8 39600 0.98 690 Test B at 1 14 66 66 0 -2 246.0 39600 0.99 690 Test B at 1 15 66 66 0 1 371.0 39600 <td>4</td> <td>100</td> <td>100</td> <td>-5</td> <td>-5</td> <td>181.0</td> <td>60000</td> <td>0.98</td> <td>785</td> <td>Test A at IB</td>	4	100	100	-5	-5	181.0	60000	0.98	785	Test A at IB			
7 100 100 0 -5 243.0 60000 0.98 785 Test A at 1 8 100 100 0 5 230.0 60000 1.00 785 Test A at 1 9 100 100 5 -5 202.0 60000 0.96 785 Test A at 1 10 100 100 5 0 192.0 60000 0.97 785 Test A at 1 11 100 100 5 5 171.0 60000 1.00 785 Test A at 1 12 66 66 0 -5 207.6 39600 0.97 690 Test B at 1 13 66 66 0 -3 220.4 39600 0.98 690 Test B at 1 14 66 66 0 -1 331.0 39600 0.99 690 Test B at 1 15 66 66 0 2 297.6 39600	5	100	100	-5	0	201.0	60000	1.00	785	Test A at IB			
8 100 100 0 5 230.0 60000 1.00 785 Test A at 1 9 100 100 5 -5 202.0 60000 0.96 785 Test A at 1 10 100 100 5 0 192.0 60000 0.97 785 Test A at 1 11 100 100 5 5 171.0 60000 1.00 785 Test A at 1 12 66 66 0 -5 207.6 39600 0.97 690 Test B at 1 13 66 66 0 -4 212.8 39600 0.98 690 Test B at 1 14 66 66 0 -2 246.0 39600 0.99 690 Test B at 1 15 66 66 0 1 371.0 39600 0.99 690 Test B at 1 16 66 66 0 2 297.6 39600	6	100	100	-5	5	210.0	60000	1.02	785	Test A at IB			
9 100 100 5 -5 202.0 60000 0.96 785 Test A at 1 10 100 100 5 0 192.0 60000 0.97 785 Test A at 1 11 100 100 5 5 171.0 60000 1.00 785 Test A at 1 12 66 66 0 -5 207.6 39600 0.97 690 Test B at 1 13 66 66 0 -4 212.8 39600 0.98 690 Test B at 1 14 66 66 0 -2 246.0 39600 0.99 690 Test B at 1 15 66 66 0 -1 331.0 39600 0.99 690 Test B at 1 16 66 66 0 2 297.6 39600 0.99 690 Test B at 1 17 66 66 0 3 227.6 39600	7	100	100	0	-5	243.0	60000	0.98	785	Test A at IB			
10 100 100 5 0 192.0 60000 0.97 785 Test A at 1 11 100 100 5 5 171.0 60000 1.00 785 Test A at 1 12 66 66 0 -5 207.6 39600 0.97 690 Test B at 1 13 66 66 0 -4 212.8 39600 0.98 690 Test B at 1 14 66 66 0 -2 246.0 39600 0.98 690 Test B at 1 15 66 66 0 -1 331.0 39600 0.99 690 Test B at 1 16 66 66 0 1 371.0 39600 0.99 690 Test B at 1 17 66 66 0 2 297.6 39600 1.00 690 Test B at 1 18 66 66 0 3 227.6 39600	8	100	100	0	5	230.0	60000	1.00	785	Test A at IB			
11 100 100 5 5 171.0 60000 1.00 785 Test A at 1 12 66 66 0 -5 207.6 39600 0.97 690 Test B at 1 13 66 66 0 -4 212.8 39600 0.98 690 Test B at 1 14 66 66 0 -3 220.4 39600 0.98 690 Test B at 1 15 66 66 0 -2 246.0 39600 0.99 690 Test B at 1 16 66 66 0 -1 331.0 39600 0.99 690 Test B at 1 17 66 66 0 1 371.0 39600 0.99 690 Test B at 1 18 66 66 0 2 297.6 39600 1.00 690 Test B at 1 20 66 66 0 4 213.6 39600	9	100	100	5	-5	202.0	60000	0.96	785	Test A at IB			
12 66 66 0 -5 207.6 39600 0.97 690 Test B at 1 13 66 66 0 -4 212.8 39600 0.98 690 Test B at 1 14 66 66 0 -3 220.4 39600 0.98 690 Test B at 1 15 66 66 0 -2 246.0 39600 0.99 690 Test B at 1 16 66 66 0 -1 331.0 39600 0.99 690 Test B at 1 17 66 66 0 1 371.0 39600 0.99 690 Test B at 1 18 66 66 0 2 297.6 39600 1.00 690 Test B at 1 19 66 66 0 3 227.6 39600 1.02 690 Test B at 1 20 66 66 0 5 199.2 39600	10	100	100	5	0	192.0	60000	0.97	785	Test A at IB			
13 66 66 0 -4 212.8 39600 0.98 690 Test B at 1 14 66 66 0 -3 220.4 39600 0.98 690 Test B at 1 15 66 66 0 -2 246.0 39600 0.99 690 Test B at 1 16 66 66 0 -1 331.0 39600 0.99 690 Test B at 1 17 66 66 0 1 371.0 39600 0.99 690 Test B at 1 18 66 66 0 2 297.6 39600 1.00 690 Test B at 1 20 66 66 0 3 227.6 39600 1.02 690 Test B at 1 21 66 66 0 5 199.2 39600 1.01 690 Test B at 1 22 33 33 0 -5 205.6 19800	11	100	100	5	5	171.0	60000	1.00	785	Test A at IB			
14 66 66 0 -3 220.4 39600 0.98 690 Test B at 1 15 66 66 0 -2 246.0 39600 0.99 690 Test B at 1 16 66 66 0 -1 331.0 39600 0.99 690 Test B at 1 17 66 66 0 1 371.0 39600 0.99 690 Test B at 1 18 66 66 0 2 297.6 39600 1.00 690 Test B at 1 19 66 66 0 3 227.6 39600 1.02 690 Test B at 1 20 66 66 0 5 199.2 39600 1.01 690 Test B at 1 21 66 66 0 5 199.2 39600 1.01 690 Test C at 1 23 33 33 0 -4 207.2 19800	12	66	66	0	-5	207.6	39600	0.97	690	Test B at IB			
15 66 66 0 -2 246.0 39600 0.99 690 Test B at 1 16 66 66 0 -1 331.0 39600 0.99 690 Test B at 1 17 66 66 0 1 371.0 39600 0.99 690 Test B at 1 18 66 66 0 2 297.6 39600 1.00 690 Test B at 1 19 66 66 0 3 227.6 39600 1.99 690 Test B at 1 20 66 66 0 4 213.6 39600 1.02 690 Test B at 1 21 66 66 0 5 199.2 39600 1.01 690 Test C at 1 22 33 33 0 -5 205.6 19800 0.97 576 Test C at 1 24 33 33 0 -3 226.0 19800	13	66	66	0	-4	212.8	39600	0.98	690	Test B at IB			
16 66 66 0 -1 331.0 39600 0.99 690 Test B at 1 17 66 66 0 1 371.0 39600 0.99 690 Test B at 1 18 66 66 0 2 297.6 39600 1.00 690 Test B at 1 19 66 66 0 3 227.6 39600 0.99 690 Test B at 1 20 66 66 0 3 227.6 39600 1.02 690 Test B at 1 21 66 66 0 5 199.2 39600 1.01 690 Test B at 1 22 33 33 0 -5 205.6 19800 0.96 576 Test C at 1 23 33 33 0 -4 207.2 19800 0.97 576 Test C at 1 24 33 33 0 -2 290.4 19800	14	66	66	0	-3	220.4	39600	0.98	690	Test B at IB			
17 66 66 0 1 371.0 39600 0.99 690 Test B at 1 18 66 66 0 2 297.6 39600 1.00 690 Test B at 1 19 66 66 0 3 227.6 39600 0.99 690 Test B at 1 20 66 66 0 4 213.6 39600 1.02 690 Test B at 1 21 66 66 0 5 199.2 39600 1.01 690 Test B at 1 22 33 33 0 -5 205.6 19800 0.96 576 Test C at 1 23 33 33 0 -4 207.2 19800 0.97 576 Test C at 1 24 33 33 0 -2 290.4 19800 0.99 576 Test C at 1 25 33 33 0 -1 359.0 19800	15	66	66	0	-2	246.0	39600	0.99	690	Test B at IB			
18 66 66 0 2 297.6 39600 1.00 690 Test B at I 19 66 66 0 3 227.6 39600 0.99 690 Test B at I 20 66 66 0 4 213.6 39600 1.02 690 Test B at I 21 66 66 0 5 199.2 39600 1.01 690 Test B at I 22 33 33 0 -5 205.6 19800 0.96 576 Test C at I 23 33 33 0 -4 207.2 19800 0.97 576 Test C at I 24 33 33 0 -3 226.0 19800 0.98 576 Test C at I 25 33 33 0 -2 290.4 19800 0.99 576 Test C at I 26 33 33 0 1 308.0 19800	16	66	66	0	-1	331.0	39600	0.99	690	Test B at IB			
19666603227.6396000.99690Test B at I20666604213.6396001.02690Test B at I21666605199.2396001.01690Test B at I2233330-5205.6198000.96576Test C at I2333330-4207.2198000.97576Test C at I2433330-3226.0198000.98576Test C at I2533330-2290.4198000.99576Test C at I2633330-1359.0198000.99576Test C at I27333302242.4198000.99576Test C at I28333303216.0198001.00576Test C at I	17	66	66	0	1	371.0	39600	0.99	690	Test B at IB			
20 66 66 0 4 213.6 39600 1.02 690 Test B at I 21 66 66 0 5 199.2 39600 1.01 690 Test B at I 22 33 33 0 -5 205.6 19800 0.96 576 Test C at I 23 33 33 0 -4 207.2 19800 0.97 576 Test C at I 24 33 33 0 -3 226.0 19800 0.98 576 Test C at I 24 33 33 0 -2 290.4 19800 0.99 576 Test C at I 25 33 33 0 -1 359.0 19800 0.98 576 Test C at I 26 33 33 0 1 308.0 19800 0.99 576 Test C at I 27 33 33 0 2 242.4 19800	18	66	66	0	2	297.6	39600	1.00	690	Test B at IB			
21 66 66 0 5 199.2 39600 1.01 690 Test B at 1 22 33 33 0 -5 205.6 19800 0.96 576 Test C at 1 23 33 33 0 -4 207.2 19800 0.97 576 Test C at 1 24 33 33 0 -3 226.0 19800 0.98 576 Test C at 1 25 33 33 0 -2 290.4 19800 0.99 576 Test C at 1 26 33 33 0 -1 359.0 19800 0.99 576 Test C at 1 27 33 33 0 1 308.0 19800 0.99 576 Test C at 1 28 33 33 0 2 242.4 19800 0.99 576 Test C at 1 29 33 33 0 3 216.0 19800 1.00 576 Test C at 1	19	66	66	0	3	227.6	39600	0.99	690	Test B at IB			
22 33 33 0 -5 205.6 19800 0.96 576 Test C at 1 23 33 33 0 -4 207.2 19800 0.97 576 Test C at 1 24 33 33 0 -3 226.0 19800 0.98 576 Test C at 1 25 33 33 0 -2 290.4 19800 0.99 576 Test C at 1 26 33 33 0 -1 359.0 19800 0.98 576 Test C at 1 27 33 33 0 1 308.0 19800 0.99 576 Test C at 1 28 33 33 0 2 242.4 19800 0.99 576 Test C at 1 29 33 33 0 3 216.0 19800 1.00 576 Test C at 1	20	66	66	0	4	213.6	39600	1.02	690	Test B at IB			
23 33 33 0 -4 207.2 19800 0.97 576 Test C at 1 24 33 33 0 -3 226.0 19800 0.98 576 Test C at 1 25 33 33 0 -2 290.4 19800 0.99 576 Test C at 1 26 33 33 0 -1 359.0 19800 0.98 576 Test C at 1 27 33 33 0 1 308.0 19800 0.99 576 Test C at 1 28 33 33 0 2 242.4 19800 0.99 576 Test C at 1 29 33 33 0 3 216.0 19800 1.00 576 Test C at 1	21	66	66	0	5	199.2	39600	1.01	690	Test B at IB			
24 33 33 0 -3 226.0 19800 0.98 576 Test C at 1 25 33 33 0 -2 290.4 19800 0.99 576 Test C at 1 26 33 33 0 -1 359.0 19800 0.98 576 Test C at 1 27 33 33 0 1 308.0 19800 0.99 576 Test C at 1 28 33 33 0 2 242.4 19800 0.99 576 Test C at 1 29 33 33 0 3 216.0 19800 1.00 576 Test C at 1	22	33	33	0	-5	205.6	19800	0.96	576	Test C at IB			
25 33 33 0 -2 290.4 19800 0.99 576 Test C at 1 26 33 33 0 -1 359.0 19800 0.98 576 Test C at 1 27 33 33 0 1 308.0 19800 0.99 576 Test C at 1 28 33 33 0 2 242.4 19800 0.99 576 Test C at 1 29 33 33 0 3 216.0 19800 1.00 576 Test C at 1	23	33	33	0	-4	207.2	19800	0.97	576	Test C at IB			
26 33 33 0 -1 359.0 19800 0.98 576 Test C at 27 33 33 0 1 308.0 19800 0.99 576 Test C at 28 33 33 0 2 242.4 19800 0.99 576 Test C at 29 33 33 0 3 216.0 19800 1.00 576 Test C at	24	33	33	0	-3	226.0	19800	0.98	576	Test C at IB			
27 33 33 0 1 308.0 19800 0.99 576 Test C at 1 28 33 33 0 2 242.4 19800 0.99 576 Test C at 1 29 33 33 0 3 216.0 19800 1.00 576 Test C at 1	25	33	33	0	-2	290.4	19800	0.99	576	Test C at IB			
28 33 33 0 2 242.4 19800 0.99 576 Test C at 29 33 33 0 3 216.0 19800 1.00 576 Test C at	26	33	33	0	-1	359.0	19800	0.98	576	Test C at IB			
29 33 33 0 3 216.0 19800 1.00 576 Test C at I	27	33	33	0	1	308.0	19800	0.99	576	Test C at IB			
	28	33	33	0	2	242.4	19800	0.99	576	Test C at IB			
	29	33	33	0	3	216.0	19800	1.00	576	Test C at IB			
30 33 33 0 4 206.0 19800 1.01 576 1est Cat	30	33	33	0	4	206.0	19800	1.01	576	Test C at IB			
31 33 33 0 5 190.8 19800 1.02 576 Test C at 1	31	33	33	0	5	190.8	19800	1.02	576	Test C at IB			

Remark:

¹⁾ P_{EUT}: EUT output power


²⁾ P_{AC}: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.

³⁾ Q_{AC}: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.


⁴⁾ BL: Balance condition, IB: Imbalance condition.

⁵⁾ *Note: test condition A (100%): If any of the recorded run-on times are longer than the one recorded for the rated balance condition, i.e. test procedure 6.1 f), then the non-shaded parameter combinations (no.32~47) also require testing.

Report No. 230401862SHA-002

4.4.4		TABLE: Sir	ngle fault tolerance	Р		
No	Component name	Componen t No.	Fault point	Duration	Result	
1.	ISO Relay	K1	Short circuit before start up inverter	3min	Unit can't operating, error massage: Iso Fault. No danger ,no hazard ,no fires	
2.	Monitoring Relay - L1	RL3	Pin1 to Pin2 short circuit before start up inverter	3min	Unit can't operating, error massage: Grid Relay Fault. No danger ,no hazard ,no fires	
3.	Monitoring Relay - L1	RL3	Pin3 to Pin4 short circuit before start up inverter	3min	Unit can't operating, error massage: Grid Relay Fault. No danger ,no hazard ,no fires	
4.	Monitoring Relay - L1	RL9	Pin1 to Pin2 short circuit before start up inverter	3min	Unit can't operating, error massage: Grid Relay Fault. No danger ,no hazard ,no fires	
5.	Monitoring Relay - L1	RL9	Pin3 to Pin4 short circuit before start up inverter	3min	Unit can't operating, error massage: Grid Relay Fault. No danger ,no hazard ,no fires	
6.	Monitoring Relay - L2	RL2	Pin1 to Pin2 short circuit before start up inverter	3min	Unit can't operating, error massage: Grid Relay Fault. No danger ,no hazard ,no fires	
7.	Monitoring Relay - L2	RL2	Pin3 to Pin4 short circuit before start up inverter	3min	Unit can't operating, error massage: Grid Relay Fault. No danger ,no hazard ,no fires	
8.	Monitoring Relay - L2	RL8	Pin1 to Pin2 short circuit before start up inverter	3min	Unit can't operating, error massage: Grid Relay Fault. No danger ,no hazard ,no fires	
9.	Monitoring Relay - L2	RL8	Pin3 to Pin4 short circuit before start up inverter	3min	Unit can't operating, error massage: Grid Relay Fault. No danger ,no hazard ,no fires	
10.	Monitoring Relay - L3	RL1	Pin1 to Pin2 short circuit before start up inverter	3min	Unit can't operating, error massage: Grid Relay Fault. No danger ,no hazard ,no fires	
11.	Monitoring Relay - L3	RL1	Pin3 to Pin4 short circuit before start up inverter	3min	Unit can't operating, error massage: Grid Relay Fault. No danger ,no hazard ,no fires	
12.	Monitoring Relay - L3	RL7	Pin1 to Pin2 short circuit before start up inverter	3min	Unit can't operating, error massage: Grid Relay Fault. No danger ,no hazard ,no fires	
13.	Monitoring Relay - L3	RL7	Pin3 to Pin4 short circuit before start up inverter	3min	Unit can't operating, error massage: Grid Relay Fault. No danger ,no hazard ,no fires	
14.	AC voltage measure1	R777	Pin1-Pin2 Short circuit	3min	Unit shut down, Error message: Grid Volt Fault. no danger ,no hazard ,no fires	
15.	AC voltage measure1	R783	Pin1-Pin2 Open circuit	3min	Unit shut down, Error message: Grid Volt Fault. no danger ,no hazard ,no fires	
16.	AC voltage measure2	R784	Pin1-Pin2 Short circuit	3min	Unit shut down, Error message: Grid Volt Fault. no danger ,no hazard ,no fires	
17.	AC voltage measure2	R790	Pin1-Pin2 Open circuit	3min	Unit shut down, Error message: Grid Volt Fault. no danger ,no hazard ,no fires	

Page 33 of 69

2 3min	Unit shut down, Error message: Grid Volt Fault.
זונ	no danger ,no hazard ,no fires
	Unit shut down, Error message:
'3min	Grid Volt Fault.
זונ	no danger ,no hazard ,no fires
2	Unit can't operating, error message:
r∢min	Inv Over Current.
111	No damage ,no hazard ,no fire.
>	Unit can't operating, error message:
'2min	Inv Over Current.
	No damage ,no hazard ,no fire.
2 2 2 min	Unit can't operating, error message:
uit Smin	Inv Over Current. No damage ,no hazard ,no fire.
) Smin	Unit shut down, error message: Grid Freq Fault.
Jit	No damage ,no hazard ,no fire
	Unit shut down ,error massage:
	BusAllVoltHwOveFault.
lit Crime	No damage ,no hazard ,no fire
2 0	Unit can't start up
uit 3min	No damage ,no hazard ,no fire
2	Unit shut down,error message:
'Amin	PV1HwoVerCurrFault.
	no danger ,no hazard ,no fires
	Unit can not start up,
efore 3min	No damage, no hazard, no fire.
0	Unit shut down. error message:
uit 3min	Slave Com Waring.
<u>, </u>	No damage, no hazard, no fire. Unit shut down.
r∢min	No damage ,no hazard ,no fire
	Unit can't operating,Error massage:
'2min	CoolingTemAdChanWarning.
lit	No damage, no hazard, no fire.
	Unit can't operating, Error massage:
'Jmin	Iso Err.
	No damage, no hazard, no fire.
	Unit can not start up,
efore 3min	No damage, no hazard, no fire.
	Unit can not start up,
etore 3min	No damage, no hazard, no fire.
	Unit can not start up,
	No damage, no hazard, no fire.
3	
	Unit can not start up,
	No damage, no hazard, no fire.
	Unit normal operation,
Jit 3min	No danger ,no hazard ,no fires
2	Unit can't start ,error message:
-	
efore 3min	Hardware Fault, No damage ,no hazard ,no fire
	JitJit2 uitJit3 minJit3

Page 34 of 69

Report No. 230401862SHA-002

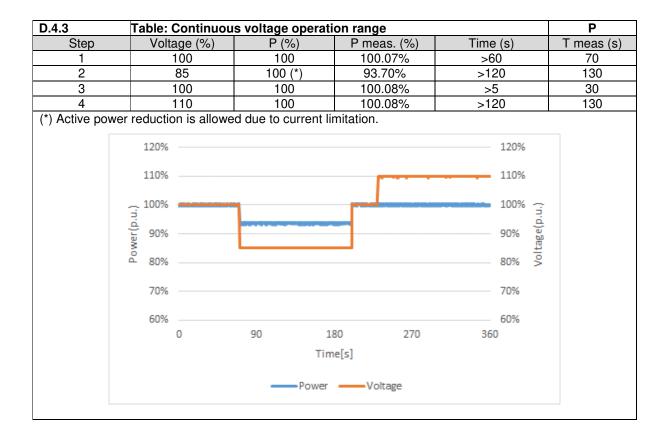
			Dist Dis0			
~~	power tube IGBT - inverter	TQ6	Pin1-Pin3	3min	Unit can't start ,error message:	
38.			Short circuit before		Hardware Fault,	
			start up		No damage ,no hazard ,no fire	
39.				3min	Unit shut down, error message:	
	GFCI check	R553	Short circuit		GFCI Fault.	
					No damage ,no hazard ,no fire	
	Power	T1	Pin10-Pin11 Short circuit before start up	3min	Unit can not start up,	
40.	supply				No damage, no hazard, no fire.	
	+20V				No damage, no nazard, no me.	
	Power		Pin25-Pin26	3min	Unit can not start up,	
41.	supply	T1	Short circuit before		No damage, no hazard, no fire.	
	+8V		start up		no damage, no nazara, no me.	
	Power supply	T1	Pin27-Pin29	3min	Unit can not start up,	
42.			Short circuit before		No damage, no hazard, no fire.	
	+12V		start up		no damage, no nazaro, no me.	
	Power supply +12V	T1	Pin132-Pin34	3min	Unit can not start up,	
43.			Short circuit before		No damage, no hazard, no fire.	
			start up			
4.4	power tube MOS-SPS	Q3	G-D Short circuit	3min	SPS no output,	
44.					no danger ,no hazard ,no fires	
	Output L1 to N		short circuit	3min	Unit shut down ,error message:	
45.					Grid Volt Fault.	
					No damage ,no hazard ,no fire	
	Output L1 to L2		short circuit	3min	Unit shut down ,error message:	
46.					Grid Volt Fault.	
					No damage ,no hazard ,no fire	
	Output L to PE		short circuit	3min	Unit shut down ,error message:	
47.					Grid Volt Fault.	
					No damage ,no hazard ,no fire	
	Output N to PE			3min	Unit shut down ,error message:	
48.			short circuit		Grid Volt Fault.	
				-	No damage ,no hazard ,no fire	
10			Output overload		Unit normal operation,	
49.	Overload		(110%)	30 min	No damage ,no hazard ,no fire	
	Cooling system		(110,0)			
50.	failure –		Put the unit to box	2Hour	1 hour power run at 80%	
00.	Blanketing test					
	PV+ to PV-		Reverse polarity	3min	Unit can not start up,	
51.					no danger ,no hazard ,no fires	
	Output L - N		Reverse polarity before start up	3min	Unit normal operation.	
52.					No damage, no hazard, no fire.	
	Output L1 - N		Reverse polarity before start up	3min	Unit can't operating, error message:	
53.					Grid Volt Fault.	
55.					No damage ,no hazard ,no fire	
			Reverse polarity		Unit normal operation.	
54.	Output L1 - L2		before start up	3min	No damage, no hazard, no fire.	
			Delote start up		ino uamaye, no nazaro, no me.	

Remarks:

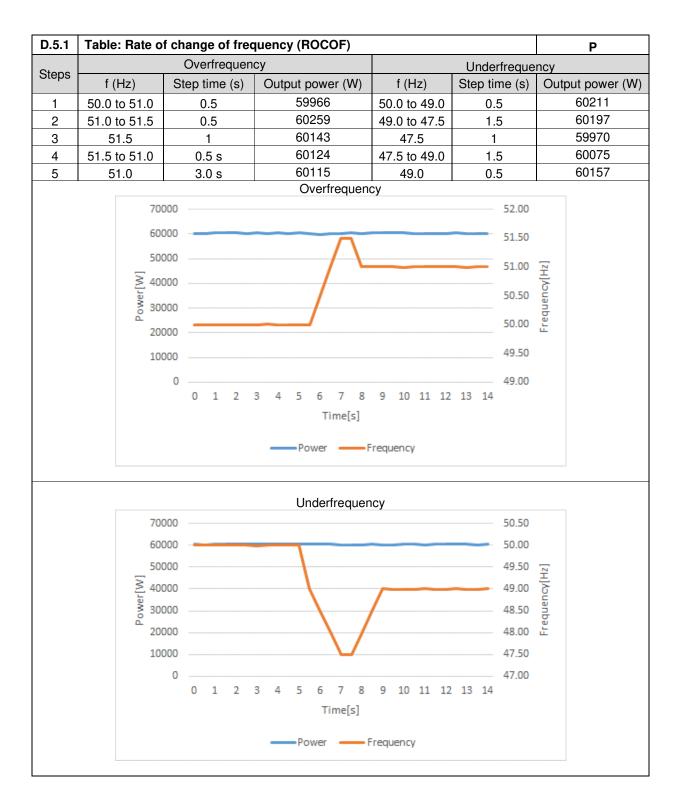
Abbreviations APS:auxiliary power supply, EM: error message , EUT: equipment under test, SC short circuit, OP: open circuit, O/L: Overloaded EUT shut down: EUT not connect to Grid ,cease to export power to Grid, the relay is opened. EUT standby: EUT connect to Grid ,cease to export power to Grid, the relay is closed.

During the test: Fire can not propagates beyond the EUT; Equipment shall not emitt molten metal; Enclosures shall not deform to cause non-compliance with the standard. Dielectric test is made on RI and BI between Pri. circuit and protective earthing terminal after the test. No Backfeed voltage on the test

D.4.1	1 Table: Operating frequency range						
		uency doma Hz – 49,0 H		Duration 30 minutes			
		Hz – 51,0 H Hz – 51,5 H		Permanent 30 minutes			
Steps	f (Hz)	f (Hz) Measured	Time	Time measured	Comn	nents	
1	47.5 Hz	47.50	>30 min	35min	Operated normally.		
2	49.0 Hz	49.00	Permanent	100min	Operated norm	ally.	
3	51.0 Hz	51.00	Permanent	100min	Operated norm	ally.	
4	51.5 Hz	51.50	>30 min	35min	Operated norm	ally.	
5	52.5 Hz	52.50	>15 min	20min	Operated normally.		
	7000 6000 5000 [M] 4000 2000 1000				53 52 51 50 49 48 47 47 46 45 44	52 51 50 [1] 49 Co 48 BB 47 21 46 45	
		0 5000 10000 15000 Time[s]			000		
		-	Power -				

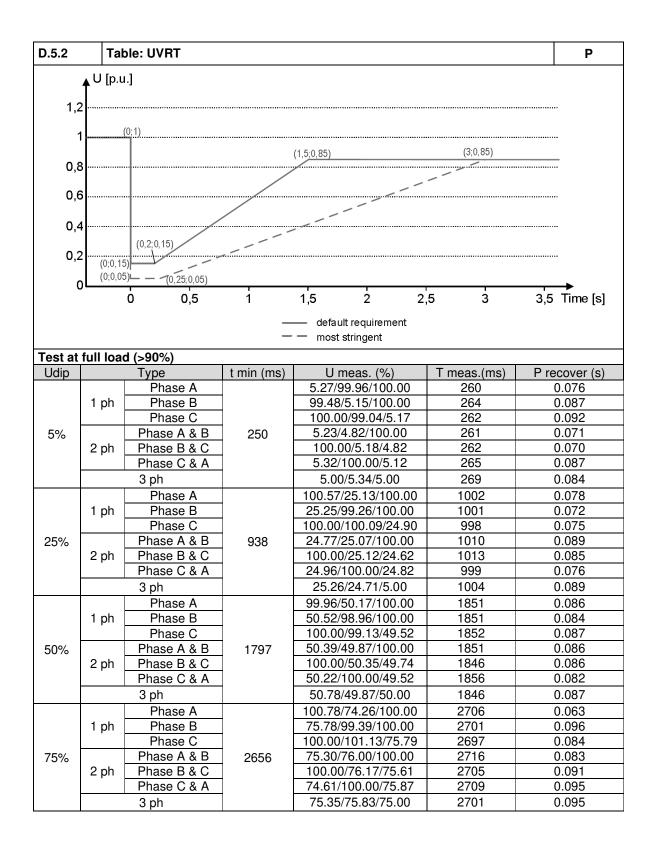

intertek

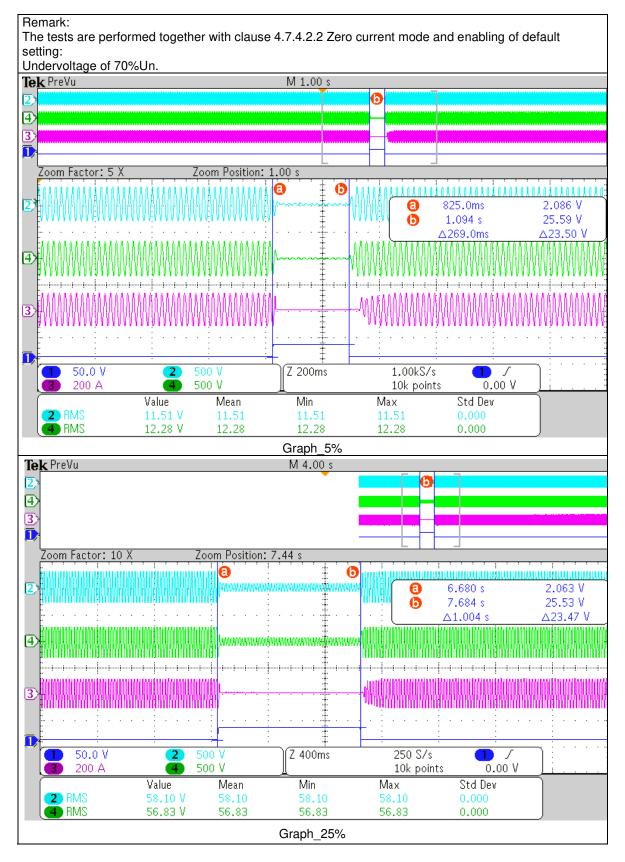
Total Quality. Assured.


D.4.2	Table	: Minimal re	quirements fo	or active power	delivery at une	derfrequency	Р
		Frequenc 47,5		9,5 49	49,5 50	, I	
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+9,0 01	2% 5% 10% Maximum allowed ∆P/P _{max}	
						Maximum al	
Step	f (Hz)	fmea. (T meas. (s)	P (%) - max	P (%) - min	P meas. (%)
1	50.00 ± 0.0			103	100%	100%	100.09%
2	49.50 ± 0.0 49.00 ± 0.0			120 120	100% 100%	100% 100%	100.09% 100.09%
4	49.00 ± 0.0 48.50 ± 0.0			120	100%	99%	100.09%
5	48.00 ± 0.0			120	100%	98%	100.03%
6	47.50 ± 0.0			120	100%	97%	100.09%
Supple	mentary inf	104% 102% 100% 98%			1	50.5 50.0 49.5 49.0 49.0 48.5	
	d) i	9070				49.0 20	
	Power(p.u.)	96%			1	48.5 np	
	Ā	94%			L	48.0 ⁴	
		92%				47.5	
		90%) 120 180 24	0 300 360 420 Time[s]	480 540 600	47.0	
			Power	-Limit_p -	Frequency		

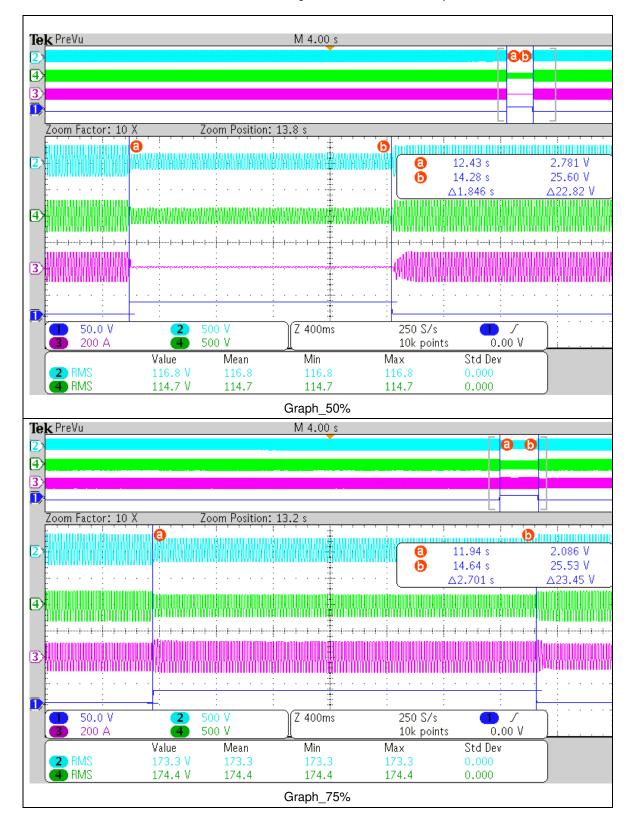
Page 37 of 69

Page 38 of 69

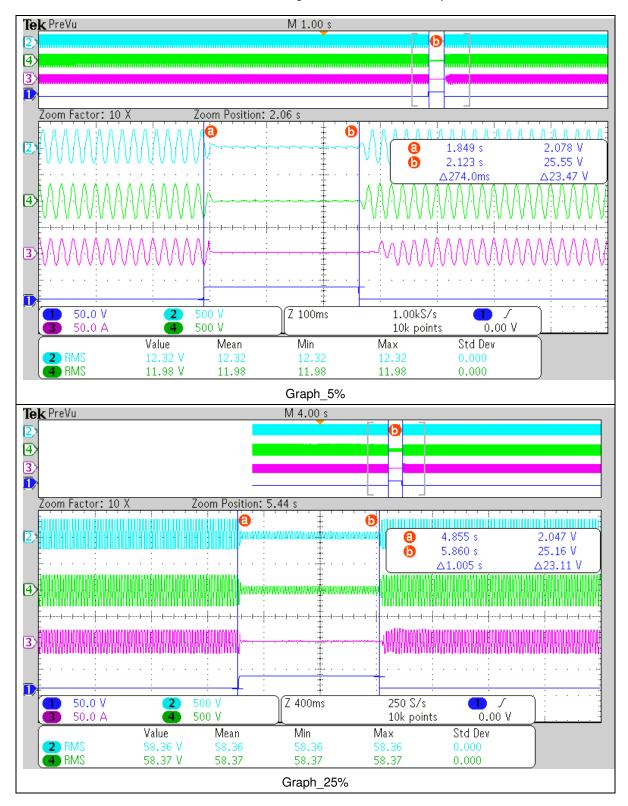




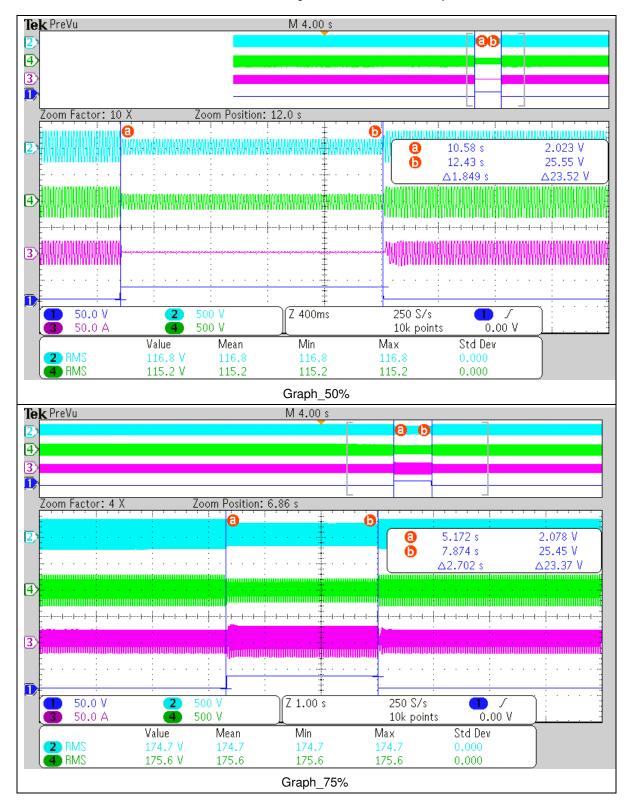
intertek


Total Quality, Assured

Intertek



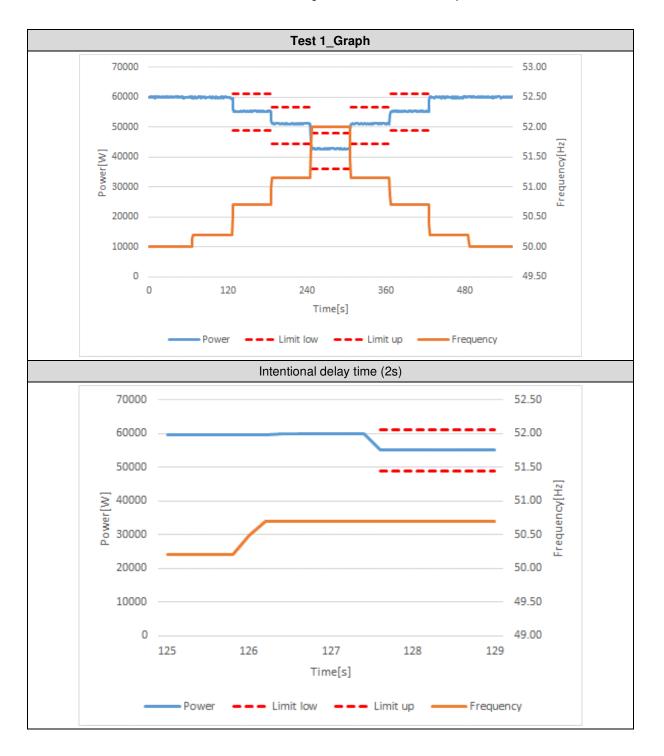
5.2	Tab	ole: UVRT				Ρ
st at pa	artial	load (30%Pn)				
lip		Туре	t min (ms)	U meas. (%)	T meas.(ms)	P recover (s)
		Phase A		100.87/4.75/100.00	264	0.070
1 p	ph	Phase B		4.79/100.17/100.00	279	0.091
		Phase C		100.00/99.65/5.02	272	0.081
6	Phase A & B 2 ph Phase B & C		250	5.24/5.26/100.00	271	0.079
2 p				100.00/5.31/4.88	268	0.082
		Phase C & A		5.12/100.00/5.36	272	0.081
		3 ph		5.36/5.21/5.00	274	0.096
		Phase A		100.09/24.75/100.00	1004	0.073
1 p	ph	Phase B]	24.77/100.26/100.00	1000	0.077
		Phase C		100.00/100.17/24.70	1005	0.072
%		Phase A & B	938	24.71/24.97/100.00	1000	0.077
2 p	ph	Phase B & C		100.00/24.98/24.69	1003	0.072
		Phase C & A		25.07/100.00/25.03	1002	0.075
		3 ph		25.37/25.38/25.00	1005	0.074
		Phase A		100.70/49.61/100.00	1843	0.093
1 p	ph	Phase B		50.70/99.61/100.00	1852	0.083
		Phase C		100.83/50.83/100.00	1853	0.087
%		Phase A & B	1797	49.48/50.09/100.00	1851	0.083
2 p	ph	Phase B & C		100.00/49.91/49.96	1847	0.084
		Phase C & A		50.78/100.00/49.13	1853	0.083
		3 ph		50.78/50.09/50.00	1849	0.084
		Phase A		99.22/75.83/100.00	2702	0.094
1 p	ph	Phase B		75.70/99.09/100.00	2695	0.076
		Phase C		100.00/100.30/74.22	2704	0.074
%		Phase A & B	2656	75.35/75.91/100.00	2706	0.090
2 p	ph	Phase B & C		100.00/74.83/76.22	2704	0.092
		Phase C & A		75.04/100.00/76.00	2688	0.088
		3 ph		75.96/76.35/75.00	2702	0.075
nark:	μı.	Phase C & A	-	75.04/100.00/76.00	2688	


Remark:

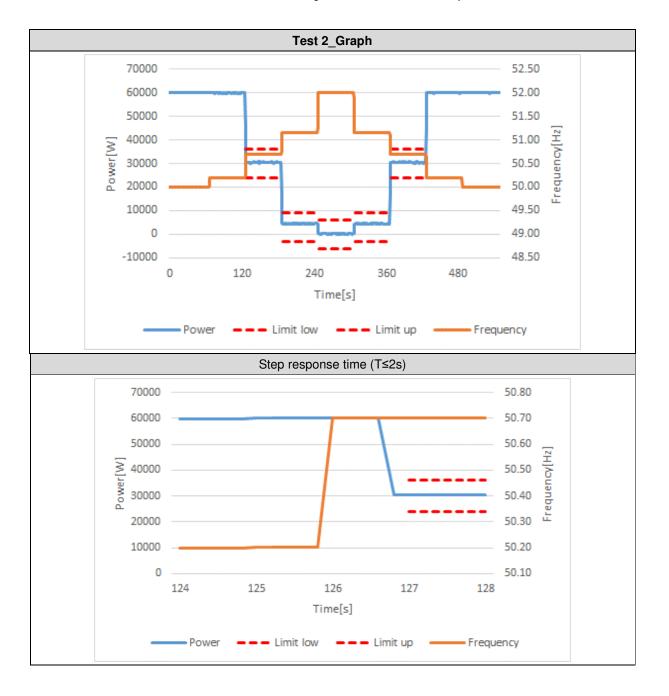
The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: undervoltage of 70%Un.

Page 44 of 69

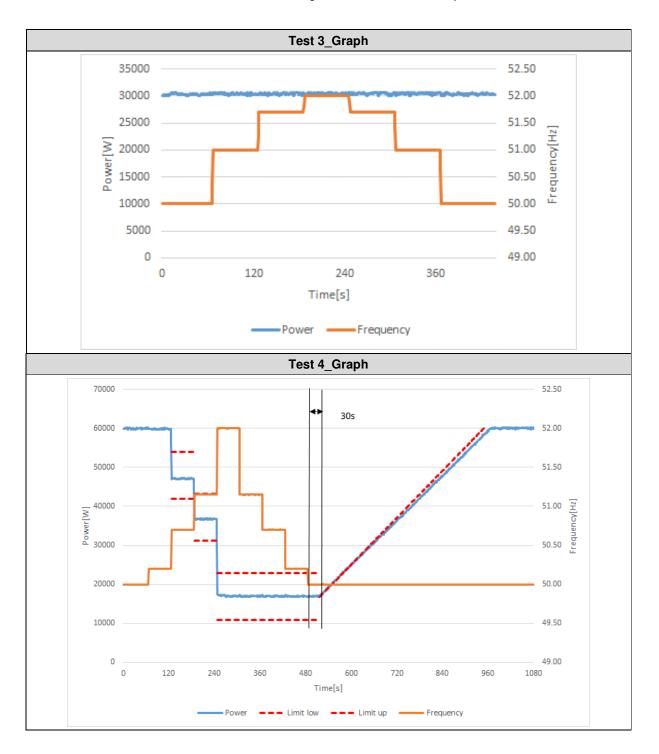
D.6.1 Table:	Power res		Р								
Grid tied mode											
		100% P _n , f1	=50.2Hz; droc	p=12%; f-stop	deactivated	, with delay c	of 2 s				
Test 1	f (Hz)	Measure d output Power (W)	Calculated from standard characteri stic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s				
50Hz ± 0.01Hz	50.00	60035.32	60000								
50.2Hz ± 0.01Hz	50.20	59925.85	60000								
50.70Hz ± 0.01Hz	50.70	55341.27	55000	341.27	± 6000	0.4s	0.8s				
51.15Hz ± 0.01Hz	51.15	51175.90	50500	675.90	± 6000	0.4s	0.6s				
52.0Hz ± 0.01Hz	52.00	42800.48	42000	800.48	± 6000	0.4s	0.8s				
51.15Hz ± 0.01Hz	51.15	51130.15	50500	630.15	± 6000	0.2s	0.4s				
50.70Hz ± 0.01Hz	50.70	55241.98	55000	241.98	± 6000	0.2s	0.4s				
50.2Hz ± 0.01Hz	50.20	59958.92	60000	-41.08	± 6000	0.4s	0.6s				
50Hz ± 0.01Hz	50.00	60017.04	60000								
		100% P _n , f1 =50.2Hz; droop=2%; f-stop deactivated, no delay									
Test 2	f (Hz)	Measure d output Power (W)	Calculated from standard characteri stic curve P (W)	Tolerance between measured P and calculated P (W)	Toleranc e Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s				
50Hz ± 0.01Hz	50.00	60063.43									
50.2Hz ± 0.01Hz	50.20	59939.68									
50.70Hz ± 0.01Hz	50.70	30692.77	30000	692.77	± 6000	0.4s	0.6s				
51.15Hz ± 0.01Hz	51.15	4709.79	3000	1709.79	± 6000	0.4s	0.8s				
52.0Hz ± 0.01Hz	52.00	223.28	0	223.28	± 6000	0.4s	0.6s				
51.15Hz ± 0.01Hz	51.15	4456.75	3000	1456.75	± 6000	0.6s	0.8s				
50.70Hz ± 0.01Hz	50.70	30252.40	30000	252.40	± 6000	0.4s	0.4s				
50.2Hz ± 0.01Hz	50.20	59777.62				0.4s	0.6s				
50Hz ± 0.01Hz	50.00	60029.74									

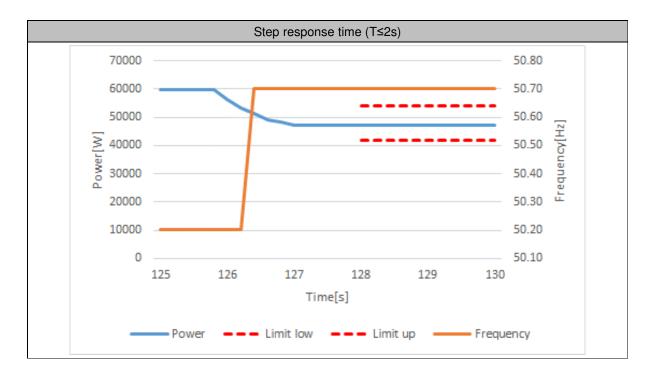


Page 47 of 69

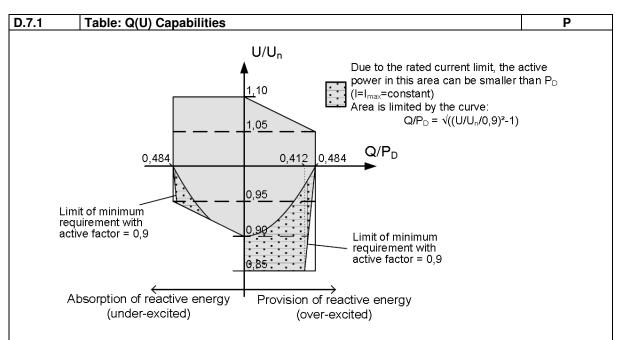

Report No. 230401862SHA-002

	50% Pn, f1 =52.0Hz; droop=5%; f-stop deactivated, no delay									
Test 3	f (Hz)	Measure d output Power (W)	Calculated from standard characteri stic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s			
50Hz ± 0.01Hz	50.00	30326.33								
51.0Hz ± 0.01Hz	51.00	30420.18	30000.00	30000.00 420.18 ± 6						
51.70Hz ± 0.01Hz	51.70	30451.13	30000.00	451.13	± 6000					
52.0Hz ± 0.01Hz	52.00	30451.52	30000.00	451.52	± 6000					
51.70Hz ± 0.01Hz	51.70	30476.67	30000.00	476.67	± 6000					
51.00Hz ± 0.01Hz	51.00	30485.38	30000.00	485.38	± 6000					
50Hz ± 0.01Hz	50.00	30365.14								
	100% P	Pn, f1 =50.2H	z; droop=5%;	f-stop =50.1, i	no delay, Dea	activation tim	e t stop 30s			
Test 4	f (Hz)	Measure d output Power (W)	Calculated from standard characteri stic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s			
50Hz ± 0.01Hz	50.00	59969.24	60000							
50.2Hz ± 0.01Hz	50.20	59800.58	60000							
50.70Hz ± 0.01Hz	50.70	47055.03	48000	-944.97	± 6000	0.4s	0.6s			
51.15Hz ± 0.01Hz	51.15	36650.15	37200	-549.85	± 6000	0.2s	0.4s			
52.0Hz ± 0.01Hz	52.00	17070.00	16800	270.00	± 6000	0.4s	0.6s			
51.15Hz ± 0.01Hz	51.15	16962.45	16800	162.45	± 6000					
50.70Hz ± 0.01Hz	50.70	16958.87	16800	158.87	± 6000					
50.2Hz ± 0.01Hz	50.20	16949.80	16800							
50Hz ± 0.01Hz	50.00	60057.88	60000							





D.7.1	Table: Q Cap	babilities (Po	wer Fact	or)				Ρ		
			À I	5						
				1,0 Sm	ax	Requir	ement			
		<u></u>	XXXX P		<u>~</u>	KXXX Deciar	n freedom a	aroa		
		N			1	<u></u>				
				/	1		r requirem			
	0,1 S _{max}									
		0,484 P _D			,484 P _D					
AI	bsorption of re		/	Pro		ctive energy				
	(under-e	xcited)			(over-exe	cited)				
	Fig	ure 12 — Rea	active po	wer capabili	ity at nomin	al voltage				
Leading PF=	0.9:			•		<u></u>				
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Cosφ setpoint	∆cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]		
10	6178.82	3498.70	0.8697	0.9	-0.0434	2905.93	0.10	± 2		
20	12263.42	5967.68	0.8992	0.9	0.0000	5811.87	0.05	± 2		
30	18329.55	8918.56	0.8992	0.9	-0.0005	8717.80	0.10	± 2		
40	24370.35	11832.58	0.8996	0.9	-0.0014	11623.73	0.14	±2		
50	30381.24	14775.86	0.8993	0.9	-0.0002	14529.66	0.21	± 2		
60	36356.64	17648.90	0.8996	0.9	-0.0004	17435.60	0.21	±2		
70	42326.99	20531.96	0.8997	0.9	-0.0004	20341.53	0.22	± 2		
80	48298.74	23437.19	0.8997	0.9	-0.0006	23247.46	0.25	± 2		
90	54258.43	26356.55	0.8995	0.9	-0.0008	26153.39	0.30	± 2		
100*	54429.89	26306.34	0.9004	0.9	0.0015					
	ie to the max	current limit,	the active	power can't	get to 100%	••				
Lagging PF=	-0.9:									
P/Pn[%]	P[W]	Q[Var]	Cosφ	Cosφ	10000	Q[Var]	$\Delta Q/S_{max}$	LIMITE		
setpoint			-	setpoint	∆cosφ	setpoint	[%]	[%]		
10	6249.76	-3143.37	0.8931	0.9	-0.0437	-2905.93	-0.04	±2		
20	12391.62	-6035.21	0.8990	0.9	-0.0011	-5811.87	-0.07	±2		
30	18585.03	-9031.70	0.8994	0.9	0.0029	-8717.80	-0.16	±2		
40	24761.87	-12009.62	0.8998	0.9	0.0017	-11623.73	-0.26	±2		
50	30894.44	-14941.95	0.9002	0.9	0.0020	-14529.66	-0.34	±2		
60	37049.66	-17957.15	0.8999	0.9	0.0017	-17435.60	-0.52	±2		
70	42230.55	-20395.59	0.9005	0.9	0.0013	-20341.53	-0.06	±2		
80	48227.72	-23351.84	0.9001	0.9	0.0012	-23247.46	-0.14	±2		
90	54220.76	-26205.25	0.9004	0.9	0.0010	-26153.39	-0.08	± 2		
100*	54407.73	-26227.27	0.9008	0.9	0.0013					
	ie to the max	current limit,	the active	power can't	get to 100%					
Q=0:										


Page 53 of 69

Report No. 230401862SHA-002

D.7.1	Table: Q Cap	abilities (Po	wer Fact	or)				Р
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Cosφ Set-point	Δcosφ	Q[Var] setpoint	ΔQ/S _{max} [%]	LIMITE [%]
10	6353.05	391.82	0.9980	1.0	-0.0061	0.00	0.07	± 2
20	12668.69	1109.56	0.9962	1.0	-0.0011	0.00	0.37	± 2
30	19011.69	1260.33	0.9978	1.0	-0.0005	0.00	0.63	±2
40	24085.73	1367.08	0.9984	1.0	-0.0004	0.00	0.91	±2
50	30133.86	1533.97	0.9987	1.0	-0.0003	0.00	1.28	±2
60	36145.32	1739.59	0.9988	1.0	-0.0002	0.00	1.74	± 2
70	42375.97	1513.50	0.9994	1.0	-0.0001	0.00	1.77	±2
80	48264.05	708.43	0.9999	1.0	-0.0001	0.00	0.94	±2
90	54479.76	738.15	0.9999	1.0	-0.0001	0.00	1.11	±2
100	60293.54	904.02	0.9999	1.0	-0.0001	0.00	1.51	±2
	100.00% 80.00% 60.00% 40.00% 20.00% -60	0.00% -40.00	0% -20.0	0% 0.00% Q/Smax [1	20.00%	40.00% 60	0.00%	
				Graph				

Page 54 of 69

D.7.1	Table: Q Capabi	ities (Power Fa	ictor)			Р
Q=43.58%P		, ,	,		1	
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	5689.93	25798.22	0.22	26148.00	-0.58	± 2
20	11778.10	25718.93	0.42	26148.00	-0.72	± 2
30	17857.51	25819.79	0.57	26148.00	-0.55	± 2
40	23911.83	25711.11	0.68	26148.00	-0.73	± 2
50	29952.58	25824.22	0.76	26148.00	-0.54	± 2
60	35972.69	25726.75	0.81	26148.00	-0.70	± 2
70	42003.19	25849.13	0.85	26148.00	-0.50	± 2
80	47996.61	25951.36	0.88	26148.00	-0.33	± 2
90	54090.77	25913.66	0.90	26148.00	-0.39	± 2
100*	53446.79	26045.88	0.90	26148.00	-0.17	± 2
Q=-43.58%	D					
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	6634.49	-26207.66	0.25	-26148.00	-0.10	± 2
20	12726.72	-26083.34	0.44	-26148.00	0.11	± 2
30	18793.79	-25936.72	0.59	-26148.00	0.35	± 2
40	24864.78	-25818.44	0.69	-26148.00	0.55	± 2
50	31065.74	-25820.57	0.77	-26148.00	0.55	± 2
60	37116.20	-25670.94	0.82	-26148.00	0.80	± 2
70	42960.65	-26030.07	0.86	-26148.00	0.20	± 2
80	48948.86	-25911.83	0.88	-26148.00	0.39	± 2
90	54887.58	-26151.11	0.90	-26148.00	-0.01	± 2
100*	53536.14	-26033.75	0.90	-26148.00	0.19	± 2
	ue to the max curr					
			Graph	0		
	120.00%					
	100.00%	•				
	80.00%	Ī			I	
	%] 60.00% —	1			ł	
	40.00%	1			ł	
	20.00%	ł			ł	
	0.00%	6 -40.00% -2	0.00% 0.00	0% 20.00% 4	0.00% 60.00%	
			Q/Sma	x[%]		

Figure 13 — Reactive power capability at active power P_D in the voltage range (positive sequence component of the fundamental)

Over-excited:							
	AC o	utput		Reactive power measured			
Voltage	Measured			Reactive	Value		
setting [V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	power [Var]	[Q/P _D]	Limits	
1.10	252.79	1.10	60858.60	790.48	0.0130	±0.02	
1.08	248.33	1.08	60865.41	11506.02	0.1890	0.194±0.02	
1.05	241.53	1.05	59231.70	28726.06	0.4850	0.484±0.02	
1.00	230.10	1.00	59163.80	28656.55	0.4844	0.484±0.02	
0.95	218.40	0.95	56528.01	27300.99	0.4830		
0.92	211.38	0.92	54320.92	26315.06	0.4844		
0.90	207.01	0.90	53297.69	25803.14	0.4841		
0.85	195.49	0.85	50512.87	24424.90	0.4835		

Under-excited	Jnder-excited:											
	AC o	output		Reactive power measured								
Voltage		Measured		Reactive	Value							
setting [V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	power [Var]	[Q/P _D]	Limits						
1.10	252.49	1.10	59486.55	-28815.69	-0.4844	-0.484±0.02						
1.08	247.89	1.08	59487.94	-28793.05	-0.4840	-0.484±0.02						
1.05	240.89	1.05	59065.14	-28637.26	-0.4848	-0.484±0.02						
1.00	229.91	1.00	59260.63	-28408.52	-0.4794	-0.484±0.02						
0.95	217.99	0.95	55736.73	-26429.59	-0.4742							
0.92	211.24	0.92	59266.46	-11437.08	-0.1930	-0.194±0.02						
0.90	206.63	0.90	59240.87	-819.21	-0.0138	±0.02						

.. .

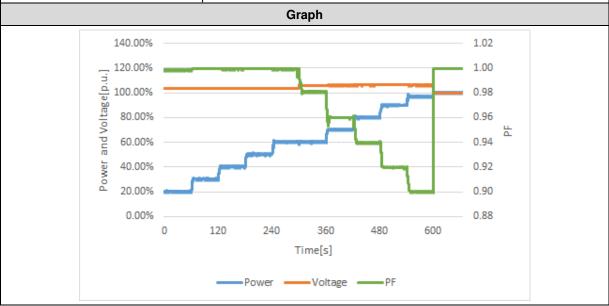
Page 56 of 69

Report No. 230401862SHA-002

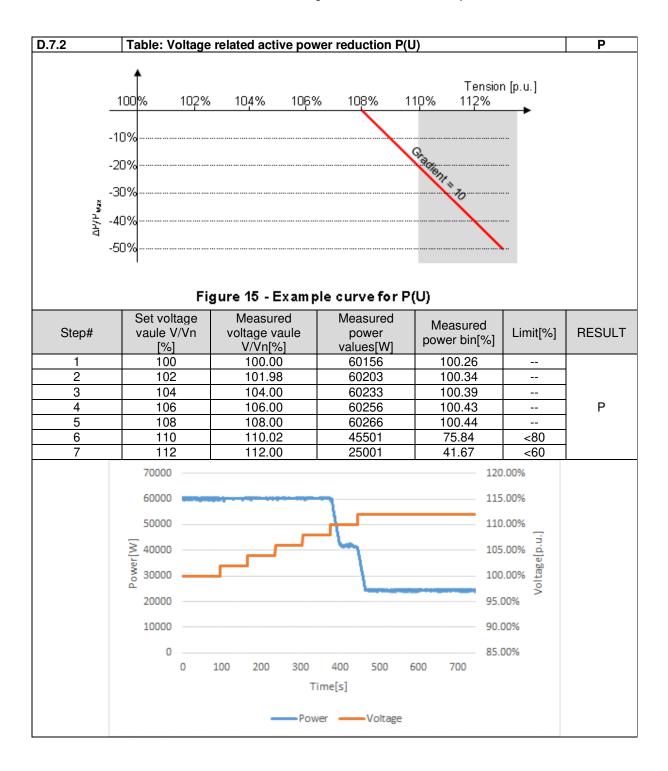
D.7.1 T	able: Q Control	. Voltage rel	ated control	mode		Р
P/Pn [%]	Vac [V]	P/Pn [%]	Vac [V]	Q [VAr]	Q [Var]	ΔQ [Var]
Setpoint	Setpoint	measured	Measured	measured	expected	(≤ ± 5 %Pn)
< 20 %	1.07 Vn	18.11	246.03	777.96	≈0 (< ± 5 % Pn)	1.30
< 20 %	1.09 Vn	18.13	250.59	861.36	≈0 (< ± 5 % Pn)	1.44
<20 % to 30 %	1.09 Vn	30.15	250.54	-13075.21	-13074.00 (Within 10sec)	0.00
40 %	1.09 Vn	40.44	250.58	-13123.17	-13074.00	-0.08
50 %	1.09 Vn	50.68	250.61	-13095.04	-13074.00	-0.04
60 %	1.09 Vn	60.63	250.57	-13145.26	-13074.00	-0.12
70 %	1.09 Vn	70.34	250.61	-13053.40	-13074.00	0.03
80 %	1.09 Vn	80.54	250.57	-13050.78	-13074.00	0.04
90 %	1.09 Vn	90.53	250.54	-13080.81	-13074.00	-0.01
100 %	1.09 Vn	100.00	250.58	-13041.11	-13074.00	0.05
100 %	1.1 Vn	99.23	252.80	-27388.80	-26148.00	-2.07
100 % to10 %	1.1 Vn	9.72	252.69	-26225.83	-26148.00	-0.13
10 % to ≤ 5 %	1.1 Vn	4.52	252.88	845.92	≈0 (< ± 5 % Pn)	1.41
P/Pn [%]	Vac [V] Set-	P/Pn [%]	Vac [V]	Q [VAr]	Q [Var] expected	ΔQ [Var]
Set-point	point	measured	Measured	measured		(≤ ± 5 %Pn)
< 20 %	0.93 Vn	18.11	213.77	440.07	≈0 (< ± 5 % Pn)	0.73
< 20 %	0.91 Vn	18.10	209.18	394.84	≈0 (< ± 5 % Pn)	0.66
<20 % to 30 %	0.91 Vn	29.77	209.14	13230.93	13074.00 (Within 10sec)	0.26
40 %	0.91 Vn	39.86	209.21	13212.92	13074.00	0.23
50 %	0.91 Vn	49.97	209.16	13132.22	13074.00	0.10
60 %	0.91 Vn	60.20	209.23	13123.89	13074.00	0.08
70 %	0.91 Vn	70.23	209.19	13157.47	13074.00	0.14
80 %	0.91 Vn	80.67	209.15	13187.11	13074.00	0.19
90 %	0.91 Vn	90.28	209.20	13148.32	13074.00	0.12
100 %	0.91 Vn	96.84	209.24	13435.32	13074.00	0.60
100 %	0.90 Vn	89.05	206.94	25322.93	26148.80	-1.38
100 % to 10 %	0.90 Vn	9.50	206.65	25195.07	26148.80	-1.59
10 % to ≤ 5 %	0.91 Vn	4.31	209.15	364.77	≈0 (< ± 5 % Pn)	0.61

Page 57 of 69

Report No. 230401862SHA-002

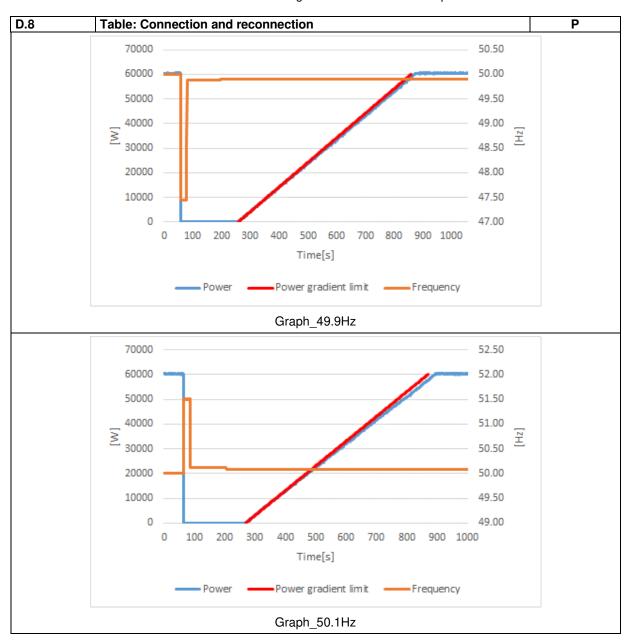


Page 58 of 69


intertek	
Total Quality. Assured.	

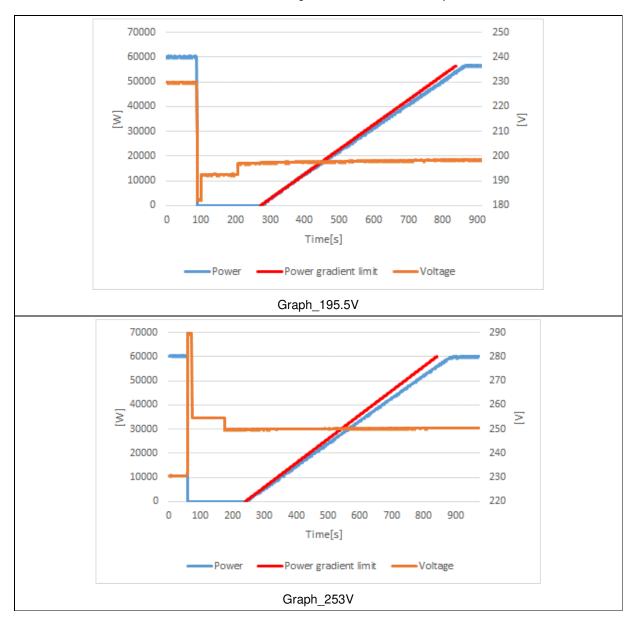
D.7.1	Table: Q C	ontrol Powe	r related co	ontrol modes	S			Р
P Desired (%Sn)	P measured (%Sn)	Q measured (Var)	Voltage Desired (%Un)	Voltage Measured (%Un)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	∆Q (%S _{Max})	Limit (%S _{Max})
20%	20.25	685.54	<105%	103.49	1.0000	0.9984	1.04	±2
30%	30.28	639.10	<105%	103.54	1.0000	0.9994	0.97	±2
40%	40.33	850.55	<105%	103.60	1.0000	0.9994	1.29	±2
50%	50.36	749.19	<105%	103.66	1.0000	0.9997	1.14	±2
60%	60.34	1090.72	<105%	103.78	1.0000	0.9995	1.65	±2
60%	60.32	6972.61	>105%	106.09	0.9800	0.9817	0.51	±2
70%	70.21	12330.02	>105%	106.17	0.9600	0.9597	-0.12	±2
80%	80.16	17451.23	>105%	106.25	0.9400	0.9400	-0.04	±2
90%	89.98	23053.69	>105%	106.34	0.9200	0.9197	-0.08	±2
100%	97.10	28199.36	>105%	106.25	0.9000	0.9001	1.30	±2
100%	100.06	1154.50	<100%	99.83	1.0000	0.9997	1.75	±2

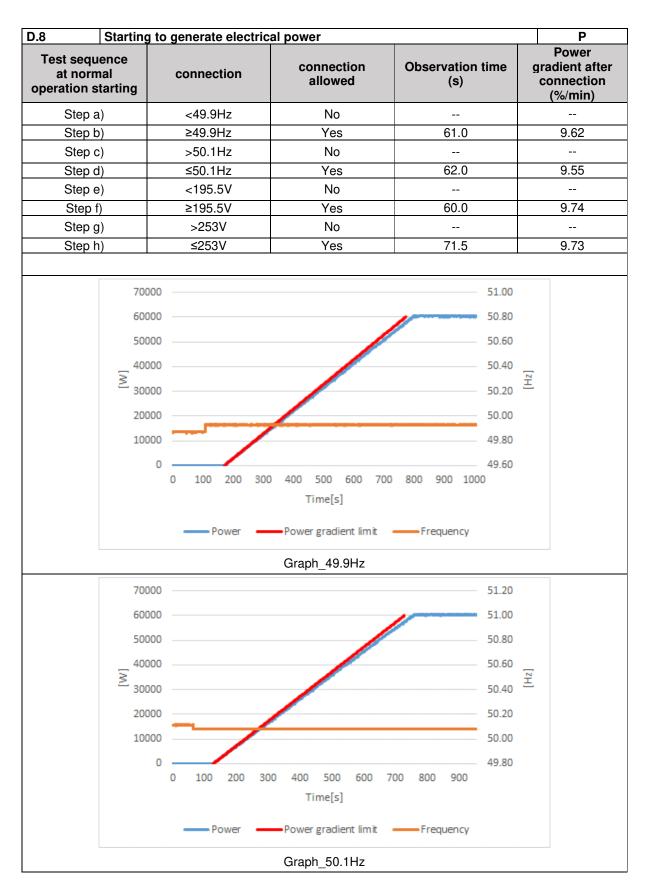
Remark: Tested at lock-in voltage 1.05 Vn and lock-out voltage Vn. The Lock-in value is adjustable between Vn and 1.1Vn in 0.01V steps, the Lock-out value is adjustable between 0.9Vn and Vn in 0.01V steps


Reconnection after tripping of the interface protection relay 49,9 Hz 50,1 Hz If connection to the LV distri- bution network: 85% U _n If connection to the HV distri- bution network: 90 % U _c	Normal operation starting 49,9 Hz 50,1 Hz If connection to the LV distri- bution network: 85% U _n If connection to the HV distri- bution network: 90 % U _o		
50,1 Hz If connection to the LV distri- bution network: 85% U _n If connection to the HV distri- bution network: 90 % U _e	50,1 Hz If connection to the LV distri- bution network: 85% Un If connection to the HV distri- bution network: 90 % Uo		
If connection to the LV distri- bution network: 85% U _n If connection to the HV distri- bution network: 90 % U _e	If connection to the LV distribution network: 85% U _n If connection to the HV distribution network: 90 % U _o		
bution network: 85% U _n If connection to the HV distri- bution network: 90 % U _e	bution network: 85% U _n If connection to the HV distri- bution network: 90 % U _o		
bution network: 90 % U _c	bution network: 90 % U _c		
If connection to the LV distri			
bution network: 110 % U _n	If connection to the LV distri- bution network: 110 % Un		
f connection to the HV distri- bution network: 110 % U₀	If connection to the HV distri- bution network: 110 % U _c		
60 s	60 s		
10 %/min*	20 %/min		
 lf 6 1	connection to the HV distri- ution network: 110 % U _o 0 s		

Test sequence after trip	connection	connection allowed	Observation time (s)	Power gradient after connection (%/min)
Step a)	<49.9Hz	No		
Step b)	≥49.9Hz	Yes	60.0	9.79
Step c)	>50.1Hz	No		
Step d)	≤50.1Hz	Yes	63.0	9.62
Step e)	<195.5V	No		
Step f)	≥195.5V	Yes	64.5	9.56
Step g)	>253V	No		
Step h)	≤253V	Yes	65.0	9.33
Remark: Maximum ac	tive power increase gra	adient 10 %/min.		

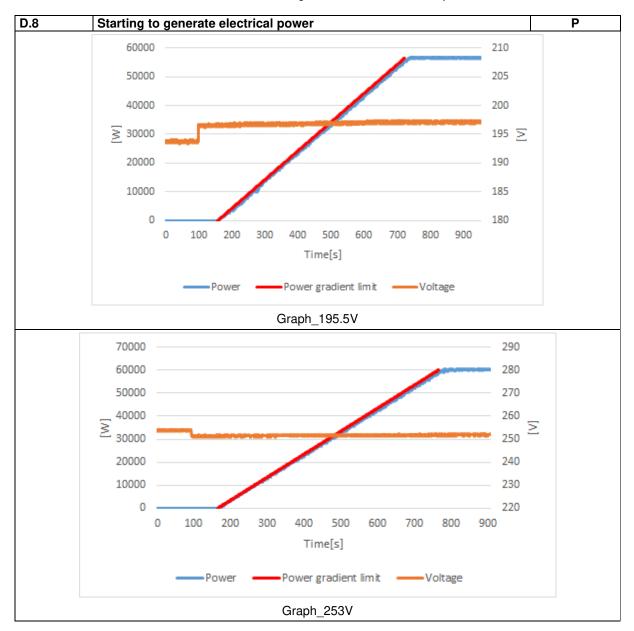
Page 61 of 69


Report No. 230401862SHA-002



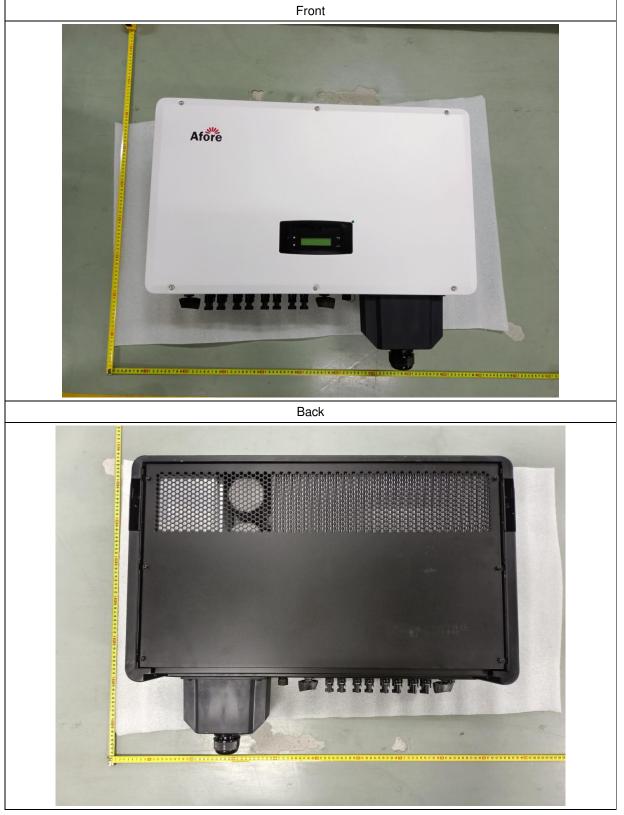
Page 62 of 69

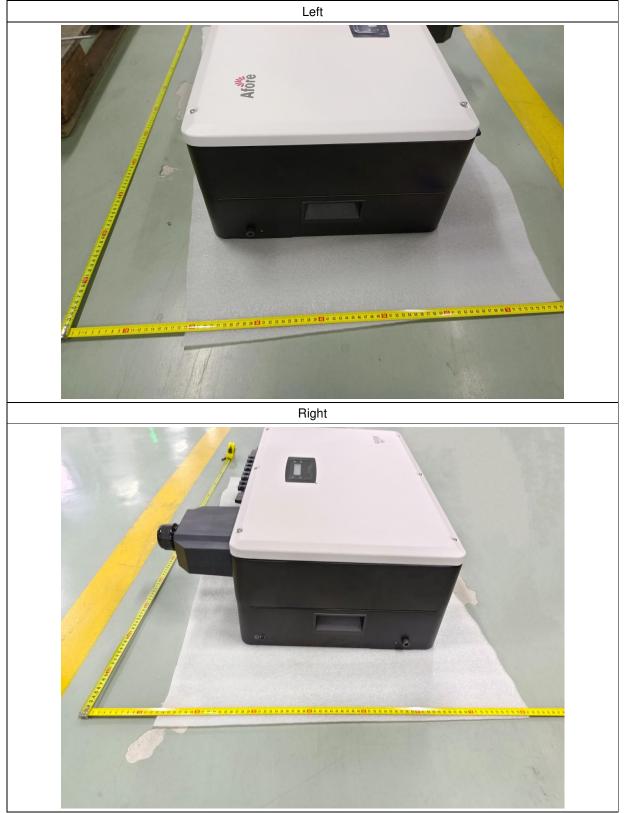
Report No. 230401862SHA-002



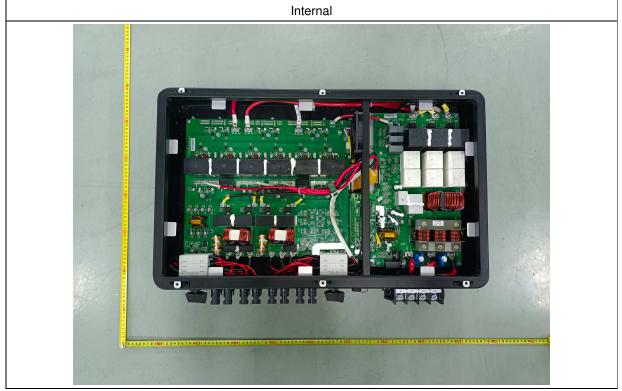
Page 64 of 69

Report No. 230401862SHA-002




D.9	Table	: Ceasir	ig and re	duction	of active power on	set point (Logic i	nterfa	ce)	Р
String	4	U _{DC} =	v		620 Vdc Uac = Un	230		PEmax		60
	1 min me				Pmeasured (%)	△Pmea	surad	(%)		Limit
		tpoint (%	5)		. ,			(70)		[%]
		100%			100.71%		71%			±5%
		90%			91.38%		38%			±5%
		80%			81.36%		36%			±5%
		70%			71.23%		23%			±5%
		60%			61.18%		18%			±5%
		50%			50.84%		0.84%		±5%	
		40%			40.76%		76%			±5%
		30%			30.84%		84%			±5%
		20%			20.92%		92%			±5%
		10%		<u> </u>	10.79%	0.	79%			±5%
					ing (%P _n /s)					48%P _n /s
Time for	Logic inter	rface (at	input po	t) activa	ted					2.024s
		120.00%								
		100.00%								
				<u> </u>						
	3	80.00%			`					
	je je				<u> </u>					
	er	60.00%								
	0	40.000/	····· ·							
	4	40.00%								
		20.00%								
		20.0076								
		0.00%					••	····		
			-			1000	120			
			0 3	200	400 600 800		120	J 1	400	
			0 :	200		1000	120	J 1	400	
			0	200	400 600 800 Time[s]	1000	120	JI	400	
			0 :		Time[s]			JI	400	
			0					J 1	400	
		ek PreVu	0		Time[s]	•••• Limit k			400	
	T		-		Time[s] r ••••• Limit up ••				400	
					Time[s] r ••••• Limit up ••	•••• Limit k			400	
	9		0 :		Time[s] r ••••• Limit up ••	•••• Limit k			+00	
	3			Powe	Time[s] r ••••• Limit up ••	C D	2007		400	
	3			Powe	Time[s]	C C C C C C C C C C C C C C C C C C C	2W		400	
	3	Zoom Facto	:: <u>5 X</u>	Zoom Por	Time[s]	Limit k	5W	052 V 7.8mV	400	
	3	Zoom Facto	:: <u>5 X</u>	Zoom Pove	Time[s]	C C	5W		400	
	3	Zoom Facto	:: 5 X MIMINIALALA	Zoom Pos	Time[s]	Limit k	5W	052 V 7.8mV	400	
	3	Zoom Facto		Zoom Pos	Time[s]	Limit k	5W	052 V 7.8mV	400	
	3 1 4	Zoom Facto		Zoom Pos	Time[s]	Limit k	5W	052 V 7.8mV	400	
	3 1 4	Zoom Facto		Zoom Pos	Time[s]	Limit k	5W	052 V 7.8mV	400	
	3 1 4	Zoom Facto		Zoom Pos	Time[s]	Limit k	5W	052 V 7.8mV	400	
	3 1 4	Zoom Facto		Zoom Pos	Time[s]	Limit k	5W	052 V 7.8mV	400	
	3 1 4	Zoom Facto		Zoom Pos	Time[s]	Limit k Limit k S		052 V 7.8mV	400	

Page 66 of 69



Page 69 of 69

